George Latimer
County Executive
Office of the County Attorney
John M. Nonna
County Attorney

March 4, 2021

Westchester County Board of Legislators
Michaelian Office Building
148 Martine Avenue, 8th Floor
White Plains, New York 10601

Re: Legislation authorizing the County of Westchester, acting by and through the County Attorney, to settle the claims of E.E. Cruz \& Company, Inc. for additional compensation under Contract No. 11-503-REV.

Dear Honorable Members of the Board:

Attached for your consideration is an Act which, if adopted by your Honorable Board, would authorize the Westchester County Attorney to settle the claims of E.E. Cruz \& Company, Inc. ("Cruz") against the County of Westchester (the "County") for additional compensation in connection with Contract No. 11-503-REV (the "Contract") for Rehabilitation of the Fulton Avenue Bridge Over Hutchinson River (BIN 3348220), City of Mount Vernon and Village of Pelham Manor, New York (the "Project").

By resolution duly approved on May 12, 2016, the Board of Acquisition and Contract awarded the Contract for the Project to Cruz for the sum of $\$ 14,816,000.00$. The scope of work for the Project included the removal and replacement of the steel bridge deck, stringers and bracing, sidewalk panels, and various secondary members of the Fulton Avenue Bridge (the "Bridge"), a bascule movable bridge over the Hutchinson River.

On or about February 2, 2020, Cruz submitted to the Commissioner of the Department of Public Works and Transportation (the "Commissioner") a verified statement in the form of a "Final Application for Payment," along with accompanying materials for his consideration, listing two (2) separate claims for additional compensation for work performed by Cruz on the Project. Specifically, Cruz seeks additional payment under Contract Item Nos. 589.01, 800.23 and 800.34 for the total sum of $\$ 1,744,719.00$ (the "Claims").

[^0]
I. The Claims:

1. Removal of Existing Steel-Item No. 589.01.

This claim concerns the removal of existing steel from the Bridge. For Item No. 589.01, the engineering consultant hired by the County to prepare the drawings, the specifications, and the necessary bidding information for the Project, Henningson, Durham \& Richardson Architecture and Engineering, in association with HDR Engineering Inc. ("HDR"), included in its bid specifications the removal of approximately of 178,684 pounds of existing steel from the Bridge. Per the bid specifications prepared by HDR, the pay unit for the removal of existing steel from the Bridge is per pound of steel removed. In its bid for the Project, Cruz provided an itemized proposal containing a unit bid price of $\$ 8.00$ per pound of existing steel removed from the Bridge, resulting in an amount bid of $\$ 1,429,472.00$ for Item No. 589.01.

To date, Cruz has been paid $\$ 1,429,472.00$ for the removal of 178,684 pounds of steel, which is in line with the original estimate provided by HDR and the amount bid by Cruz. Cruz, however, seeks additional payment of $\$ 1,292,000.00$ from the County, claiming that it removed a total of 340,184 pounds of existing steel from the Bridge, or 161,500 pounds over and above the amount approximated by HDR. Upon investigation of Cruz's claim, the County discovered that HDR neglected to include the Bridge's steel decking in its original estimate.

2. Floorbeam 5 Interferences - Item Nos. 800.23 and 800.34 .

This claim concerns in-field modifications along the upper and lower flanges of the Bridge's Floorbeam 5. The in-field modifications were required when the upper and lower flanges made contact with separate joints during test operations on November 13, 2017 and February 15, 2018, respectively. Cruz claims that the interferences were the result of errors in the design documents prepared by HDR related to the deck joint assembly work contemplated by the Contract. Cruz furthermore claims that it is entitled to additional compensation in the total sum of $\$ 452,718.00$ for the resulting in-field modifications.

II. The Commissioner's Determination.

Pursuant to the terms of the Contract, the Commissioner is the arbiter of any, and all, disputes between the County and Cruz arising out of the Contract plans and/or the measurement for payment thereunder. In accordance with this role, the Commissioner issued a determination (the "Determination") addressing the Claims on August 27, 2020, a copy of which I annex for your reference. After due consideration of the Claims, and consultation with the Law Department with respect to the relevant and applicable law governing the same, the Commissioner ultimately determined that Cruz is entitled to additional compensation of $\$ 1,061,745.60$ under Item No. 589.01, and that Cruz is not entitled to additional compensation under Item Nos. 800.23 and 800.34. Furthermore, the Commissioner determined that a disincentive assessment of $\$ 366,000.00$, applied pursuant to Item No. 698.93940015 for Cruz's failure to timely complete the Project, reduces the additional compensation due under Item 589.01 to $\$ 695,745.60$.

1. Removal of Existing Steel - Item No. 589.01.

The general rule is that unit price contracts entitle a contractor to payment for work completed, at the agreed-upon unit price. To this point, the courts have consistently held that, even in circumstances in which the amount of work completed is considerably in excess of the agreed
upon original estimates upon which a unit price contract is based, the payment terms remain valid and the parties must abide by them as long as the contract is clear, complete and unambiguous.

Here, the Contract is a unit price contract; to wit, incorporated into the Contract is Cruz's itemized proposal containing unit prices bid for each work item, including the unit price of $\$ 8.00$ per pound of steel removed from the Bridge. The terms of the Contract are clear, complete and unambiguous. As such, pursuant to the applicable legal authority, Cruz is entitled to payment of $\$ 8.00$ per pound of steel removed from the Bridge notwithstanding the fact that the total amount of steel removed exceeds HDR's original estimate.

Premised upon the foregoing, the Commissioner determined that Cruz is due additional payment in the sum of $\$ 1,061,745.60$ under Item No. 589.01. In reaching this determination, the Commissioner rejected Cruz's claim that it removed a total of 340,184 pounds of steel from the Bridge-an overrun of 161,500 pounds from HDR's original estimate-and noted that Cruz offered no support whatsoever for their numbers. The Commissioner instead pointed to balancing equations provided by Cruz in its communications with the County, and then deducted quantities of items that are not payable per the Project specifications (i.e., concrete, welds, bolts, etc.) to support his calculation that Cruz removed a total of $311,402.2$ pounds of existing steel from the Bridge under Item No. 589.01. The Commissioner's calculation thus resulted in the following determination:

HDR's Original Estimate:
Total Steel Removed by Cruz:
Difference:
Unit Price Bid by Cruz:
Sum Due to Cruz:

$$
178,684.0 \text { lbs. }
$$

$$
311,402.2 \mathrm{lbs} .
$$

132,718.2 lbs.

$$
\$ 8.00 / \mathrm{lb}
$$

$$
\$ 1,061,745.60(132,718.2 \mathrm{lbs} . x \$ 8.00)
$$

2. Floorbeam 5 Interferences - Item Nos. 800.23 and 800.34 .

The Commissioner determined that Cruz is not entitled to additional compensation for the in-field modifications performed by Cruz with respect to Item Nos. 800.23 and 800.34. In support of this determination, the Commissioner points to the clear and unequivocal language contained in the Contract requiring Cruz to perform all necessary field surveys to verify field conditions and to verify all existing dimensions affecting the fabrication, construction and fit of replacement concrete and steel elements required for the Project. Further to this point, the Contract required Cruz to fabricate all materials in accordance with their own measurements, and not to rely solely on the plans and specifications provided by HDR. Accordingly, Cruz should have known of the potential interferences to the upper and lower flanges of Floorbeam 5 prior to test operations, thus precluding Cruz's claim for additional compensation under Item Nos. 800.23 and 800.34.

3. Disincentive Assessment - Item No. 698.93940015.

Under Item No. 698.93940015, substantial completion of the project was required on or before November 22, 2017. The work was not substantially complete until May 24, 2018-183 days beyond the substantial completion date. Accordingly, pursuant to a Special Notice annexed to the Project's bid specification, a disincentive assessment of $\$ 2,000.00$ per day must be applied, reducing the sum due Cruz under Contract Item No. 589.01 to $\$ 695,745.60$ (183 days x $\$ 2,000 /$ day $)$.

III. Settlement of the Claims.

Cruz advised that it disagrees with the Commissioner and intends to challenge the Determination via an Article 78 proceeding. The Department of Law, the Department of Public Works and Transportation, and the principals of Cruz have engaged in negotiations in order to avoid the potential expense of litigation. These negotiations have resulted in a proposed agreement (the "Settlement Agreement") to settle Cruz's Claims, conditioned on your Honorable Board's approval.

Pursuant to the proposed Settlement Agreement, the County is to pay Cruz the full sum of $\$ 850,000.00$ in full and final settlement of its Claims. HDR is to contribute $\$ 154,254.40$ to the $\$ 850,000.00$ settlement amount with Cruz via direct payment to the County pursuant to a separate agreement with the County, which is the subject of separate legislation submitted to your Honorable Board for approval simultaneously with this legislative package. The following reflects the proposed settlement with Cruz:

Cruz Claim under Item No. 589.01: $\quad \$ 1,292,000.00$
Cruz Claim under Item Nos. 800.23 and 800.34: \$ 452,719.00
Total Cruz Claim:
Item No. 589.01 Determination:
Item Nos. 800.23 and 800.34 Determination:
\$1,061,745.60
Item No. 698.93940015 Determination:
Total Due Determination:
(\$366,000.00)
\$ 695,745.60
Proposed Settlement Amount: $\quad \$ \mathbf{8 5 0 , 0 0 0 . 0 0}$
Proposed Payment by the County: \$ 695,745.60
Proposed Payment by HDR: \$ 154,254.40
In consideration of the $\$ 850,000.00$ payment to Cruz, Cruz and the County will release each other from all claims and/or causes of action related to Cruz's Claims, and the County will rescind and retract the disincentive assessment made within the Determination identified as Item No. 698.93940015.

This Act is subject to Section 158.11(5) of the Westchester County Charter.

Attachments

[^1]

In the Matter of the Claim of:

E.E. Cruz \& Company, Inc. for Additional Compensation
under Westchester County Contract No. 11-503-REV
for Rehabilitation of the Fulton Avenue Bridge
Over Hutchinson River (BIN 3348220), City of
Mount Vernon and Village of Pelham Manor, New York.

COMMISSIONER'S
 DETERMINATION

I. AUTHORITY

By a resolution duly approved on May 12, 2016, the Westchester County Board of Acquisition and Contract (the "County Board") awarded Contract No. 11-503-Rev. for Rehabilitation of the Fulton Avenue Bridge over Hutchinson River (BIN 3348220), City of Mount Vernon and Village of Pelham Manor, New York, to E.E. Cruz \& Company, Inc. in the sum of $\$ 14.816,000.00$.

Pursuant to the May $12^{\text {th }}$ Resolution, the County of Westchester (the "County") executed Contract 11-503-REV with E.E. Cruz \& Company, Inc., which included the following: (i) the Agreement, dated May 12, 2016 (the "Agreement"), (ii) Information for Bidders, (iii) General Clauses, (iv) Special Clauses, (v) Specifications, (vi) Itemized Proposal, and (vii) Plans and issued Addenda (collectively referred to as the "Contract").

As a condition precedent to receiving final payment under the Contract. the Contractor is required to submit a supplementary verified statement that includes all claims that accrued between substantial completion and final completion of the project. Information for Bidders, \S 22(B). Only claims particularly identified on the Contractor's supplementary verified statement would be preserved; all other claims of whatever nature would be deemed waived and released. Id.

The Contractor submitted a Contractor's Certificate for Final Application for Payment, sworn to on February 2. 2020, along with accompanying materials, in support of its final claim for payment ("Final Application for Payment"). A copy of the Final Application for Payment is annexed as Exhibit "A." In paragraph 4 of the Final Application for Payment, the Contractor listed the following unpaid bills and liabilities:

Claims No.	Name of Claimant	Purposes	Amount
1.	E.E. Cruz	589.01-Removal of existing steel	\$1,292,000.
2.	E.E. Cruz	FB 5 Interferences	\$452,718.
3.	E.E. Cruz	Final Retainage Release	\$148,160.

Accompanying the Final Application for Payment, the Contractor submitted the following materials in support of Claim Nos. (1) and (2):

1. Letter Log No L-022. dated February 12. 2020, re: Contract No. 11-503-REV, Rehabilitation of Fulton Avenue Bridge over Hutchinson River Item 589.01Removal of Existing Steel- Additional Quantities, a copy of which is annexed as Exhibit "B" ("Letter Log No. L-022").
2. Letter Log No. L-23, dated February 12, 2020, re: Contract No. 11-503-REV, Rehabilitation of Fulton Avenue Bridge over Hutchinson River- 800.23 - Floor Beam 5 Upper Flange Interference and 800.34 - Floor Beam 5 Bottom Flange Interference, a copy of which is annexed as Exhibit "C" ("Letter Log No. L-23").

The Commissioner of the Department of Public Works and Transportation (the "Commissioner") is authorized to render a full and final determination as to any and all disputes pursuant the following provision in the Contract:
" $[\mathrm{S}]$ hould any dispute arise respecting the true construction, interpretation or meaning of the Contract plans, specifications or conditions herein, or the measurement for the payment thereunder, same shall be referred to and decided by the said Commissioner and his decision hereon shall be final and conclusive upon the parties hereto and may not be challenged except in a proceeding commenced pursuant to Article 78 of the Civil Practice Law and Rules. This provision shall also apply to the true value of any duly authorized extra work or any work permitted by agreement in case any work shall be ordered performed, or any work called for shall be so omitted under and upon the direction of said Commissioner."

Agreement, p. 8 (emphasis added).
In accordance with the authority granted to the Commissioner pursuant to the Contract, I have fully reviewed the claims submitted by E.E. Cruz \& Company, Inc. (the "Contractor"). After careful consideration, the following constitutes my full and final determination with respect to the Contractor's Claim Nos. 1 and 2; a separate determination shall be rendered with respect to the Contractor's Claim No. 3.

II. FACTS

By the May $12^{\text {th }}$ Resolution, the County Board awarded the Contract to the Contractor for the sum of $\$ 14,816,000.00$. The scope of work for the rehabilitation of the Fulton Avenue bridge (the "Bridge"), a bascule movable bridge, over the Hutchinson River (the "Project") included the removal and replacement of the Bridge's "steel bridge deck, stringers and bracing, sidewalk panels and various secondary members...[and] both approach spans...." General Requirements to the Contract, para. l.

Upon its submission of the Contractor's Final Application for Payment and Letter Log Nos. L-022 and L-023, the Contractor seeks an additional payment under Contract Item Nos. 589.01 (Claim No.1), as well as 800.23 and 800.34 (Claim No. 2) for the total sum of $\$ 1,744,718.30$.

a. Claim No. 1 - Item No. 589.01 - Removal of Existing Steel.

Item No. 589.01 concerns the removal of existing steel from the Bridge. For Item No. 589.01, the County provided the "approximate" quantity of 178,684 pounds of existing steel with the "Pay Unit" being measured in pounds. In its bid for the Project, the Contractor provided a "Unit Bid Price" of $\$ 8.00$ per pound resulting in an "Amount Bid" of $\$ 1,429.472 .00$ for the removal of the 178.684 pounds of existing steel approximated by the County`s engineering consultant, HDR Engineering Inc. (the "Engineer").

To date. the Contractor has been paid $\$ 1,429,472.00$ for the removal of 178,684 pounds of steel.

The Contractor seeks an additional payment of $\$ 1,292,000.00$ from the County for the removal of existing steel under Item No. 589.01 and seeks a determination with respect to same by submission of Letter Log No. L-022. Specifically, the Contractor claims that it removed a total of 340,184 pounds of existing steel from the Bridge, or 161.500 pounds over and above that which was approximated by the Engineer. Notwithstanding its estimation. the Contractor claims that the County acknowledged a total existing steel removal quantity of 320,263 pounds and requests a minimum payment of $\$ 1,132,632.00$ under Item No. 589.01 , calculated as an additional 141,579 pounds at the Unit Price of $\$ 8.00$ /pound. The Contractor has not annexed any support for its 340,184 pound estimation. or any support for its claim that the County has acknowledged and agreed that 320.263 pounds of steel were removed. to its application for additional payment under Item No. 589.01.

The County, in turn, does not deny that at the point in time the 178,684 pounds of steel was removed that amount represented only part of the amount of the steel that needed to be removed, and the removal of the existing steel had not been completed. However, the County disputes the quantity of additional existing steel the Contractor claims it removed.

The Engineer calculates that the Contractor removed a total of 311.402 .2 total pounds of steel from the Bridge-an overrun of 132,718.2 pounds from the original estimate provided by the County. The County furthermore claims that it never acknowledged and/or agreed that 320,263 pounds of steel were removed from the Bridge. Rather. the County agrees that it discussed the 320,263 quantity number with the Contractor. but that this was done prior to the Engineer fully examining the item in detail and analyzing each component of the quantity of steel involved. The County refers to a September 16, 2019 email to the Contractor, a copy of which is annexed as Exhibit "D", in which the Project Engineer provides the basis for its calculation that the total quantity of steel removed was $311,402.2$ pounds. The County claims that the $311,402.2$ poundage was determined by using balancing calculations provided by the Contractor, and then deducting quantities not payable per the Project specifications (i.e.,
concrete, welds, bolts, etc.). The County, by the Engineer, offers a detailed estimation resulting in the quantity alleged, a copy of which is annexed hereto as Exhibit " E ".

b. Claim No. 2 - Item Nos. 800.23 and 800.34 - Floor Beam 5. Upper and Bottom Flange Interference.

Item Nos. 800.23 and 800.34 concern in-field modifications along the upper and lower flanges of the Bridge's Floorbeam 5 for which the Contractor claims it is due payment under the Contract. Upon its submission of Letter Log No. L-023, the Contractor seeks payment under Item Nos. 800.23 and 800.34 of $\$ 61,280.03$ and $\$ 391,438.27$, respectively.
i. Item No. 800.23 - Floor Beam 5 - Upper Flange Interference.

This claim concerns a constructability interference, which occurred when the Contractor attempted to raise the Bridge to prepare for an incoming barge on November 13, 2017. Specifically, upon attempting to raise the Bridge. it was discovered that a floor beam flange on both the East and West spans of the Bridge were coming into contact with a joint requiring the Contractor to cut the floor beam flange to enable the Bridge to continue to raise. The Contractor claims that the design documents of the Engineer were not clear on the measurements and are the cause of the interference, and subsequent additional work required. The County, however, claims that the Contractor is at fault because the Contractor was required to conduct contractually required surveys and confirm all measurements prior to fabricating the replacement portions of the Bridge and attempting to raise the Bridge. The County claims that if the Contractor conducted the required survey(s) and confirmed the measurements in advance as required. it would have discovered the issue, it could have requested prior clarification, and it could have avoided any costs associated with the interference.

ii. Item No. 800.34 - Floor Beam 5 - Bottom Flange Interference.

This claim concerns a constructability interference, which occurred during a test operation of the Bridge on February 15, 2018. Specifically. the bottom flange of Floorbeam 5 on both the East and West spans of the Bridge interfered with the counter-weight slab armor joint, preventing same from opening to its predetermined seventy (70) degree mark; thus, requiring the Contractor to cut three (3) inches of steel from each corresponding flange as both the Pellam Manor span and Mount Vernon Span of the Bridge were affected. This, however, affected the integrity of the flange as a whole. requiring the Contractor to drill steel on the other side of the flange in order to reinforce the flange and the beam. The Contractor again claims that the interference stems from a flaw in the designs provided by the Engineer. The County again claims that the Contractor is at fault because the Contractor was required to conduct contractually required surveys and confirm all measurements prior to fabricating the replacement portions of the Bridge and attempting to raise the Bridge. which would have thus discovered the issue in advance, could have requested prior clarification, and avoided the subsequent costs associated with the interference claimed by the Contractor.
c. Item No. 698.93940015 - Disincentive Assessment.

There is another Item No. that affects the County's ability to make any payments to the Contractor under the Contract that that must be analyzed.

Item No. 698.93940015 concerns "incentive payments/disincentive assessments for work subject to the Special Note 'Incentive/Disincentive Clause." Itemized Proposal, p. 6.

The Contract provides that "[l]ate completion of I/D work will result in a disincentive assessment which will be deducted from money due to the contractor." Special Notice, p. 2.

I/D Work is defined to include "all work relating to the closure of the Fulton Avenue Bridge to two-way vehicular and pedestrian traffic as detailed in the reference contract plans" (the "I/D Work"). Id.

The Contract provides for an assessment in the sum of $\$ 2,000.00$ per day (the "Daily Cost") beginning the calendar day subsequent to Wednesday November 22, 2017 and continuing each day thereafter until the I/D Work is substantially completed to the satisfaction of the Engineer. Id. at p.1. Substantial completion is defined as the date upon which the Bridge is "successfully opened 9 out of 10 times, under normal operating conditions from the new operator's house, within a 4 -hour window." Id. at p. 2-3. The Engineer is the sole authority in determining when the work is substantially complete. Id. at p. 3.

Moreover, the Contract provides:
"Failure to substantially complete any I/D work within the number of consecutive calendar days specified will result in the daily cost specified for that work in the special note "DESCRIPTION OF I/D WORK" being assessed for every calendar day in excess of the number of consecutive calendar days specified, up to the time when the work is substantially complete. THERE IS NO LIMIT ON THE AMOUNT OF DISINCENTIVE ASSESSMENT."

Id. at p. 3 (emphasis in the original).

III. DISCUSSION

The Commissioner's determination is ultimately guided by the terms of the Contract itself, which includes the drawings. plans and specifications.
a. Claim No. 1-Item No. 589.01 - Removal of Existing Steel.

The general rule is that unit price contracts entitle a contractor to payment for work completed, at the agreed-upon unit price, even in circumstances in which the amount of work is considerably in excess of the estimates. In such a case, the contractor is entitled to the unit price bid. but not to any unforeseen damages, lost profit or additional costs or materials.

Here, the Contract is subject to the Contractor's "Itemized Proposal" with unit prices bid for each work item. As such, it is a unit price contract subject to the following covenants as set forth in the Contract:

The County covenants and agrees with the said Contractor, in consideration of the covenants and agreements herein being strictly and in all respects complied with by the said Contractor as specified, that it will well and truly pay unto said Contractor the unit prices set forth in the Proposal for the various items included in the Contract. Agreement, p. 2.

The Contractor will accept the unit prices named in the proposal for all additions to or deductions from the original quantities as given in the specifications. It is agreed that the Commissioner will make estimates of the value for the work completed as provided in the specifications and the final estimate will be made accordingly. Agreement, p. 4.

If the various parts of the work have been divided into classes and/or items to enable the bidder to bid for different portions of the work in accordance with its estimate of their costs. in the event of any increase or decrease in the quantity will be paid for at the price bid for that particular item. The sum of the amount for each class or item. obtained by multiplying the approximate quantity by the unit price, shall constitute the total sum bid. Information to Bidders. § 13.

Pursuant to the terms of the Contract, the Contractor is entitled to payment for the removal of quantities of steel over and above the approximate quantity provided by the County under Item 589.01 at the "Unit Bid Price" of $\$ 8.00$ per pound.

Notwithstanding the foregoing, the Contractor failed to provide any support whatsoever in its application for additional payment to substantiate its claim that it removed 340.184 pounds of steel. Nor has the Contractor provided any support for its claim that the County acknowledged a quantity of 320.263 . Indeed, the only support annexed to its application for payment were excerpts of Contract provisions supporting its claim for additional payment at the Unit Bid Price of $\$ 8.00$ /pound; nothing to support the actual estimate that it alleges.

The County, on the other hand, supports its claim with a communication to the Contractor advising of its 311.402 .2 estimation as well as a detailed analysis of how it reached said estimation. As such, it is my determination that the Contractor is entitled to additional payment of $\$ 1,061,745.60$ under Item 589.01 , calculated as an additional 132,718.2 pounds of steel removed at a Unit Bid Price of $\$ 8.00 /$ pound.
b. Claim No. 2 - Item Nos. 800.23 and 800.34 - Floor Beam 5 - Upper and Bottom Flange Interference.

The terms of the Contract are clear; to wit: the relevant terms of the Contract are as follows:

Agreement, p. 2:
The Contractor acknowledges receipt of the "Information for Bidders, General and Special Clauses, Specification, Proposal and Plans" relating to this Contract, as well as all issued Addenda thereto, all of which are expressly incorporated in this Contract as if fully set forth herein.

Agreement. p. 9:
The Contractor by the submitting of bids and execution of this Contract hereby covenants and agrees that he has examined the plans, specifications and the site work, as to local conditions. difficulties and accuracy of approximate estimate quantities and does hereby further covenant and agree that he will not make any claim for damages by reason of any such local conditions, difficulties or variation of approximate estimate of quantities.

Special Clauses, para. 34:
The detail plans and specifications for the contract have been prepared with care and intended to show as clearly as is practicable the work required to be done. The contractor must realize however, that construction details cannot always be accurately anticipated and that in executing the work, field conditions may require reasonable modifications in the details of the plans and quantities of work involved. Work under all items in the contract must be carried out to meet these tield conditions to the satisfaction of the Engineer and in accordance with his instructions and the contract specifications.

Drawing No. S-03, Sheet No. 14 of 159. Note 16 (emphasis added):
These contract documents have been prepared based on field inspections and original contract plans. Actual field conditions may require modifications to construction details and work quantities. The Contractor shall perform work in accordance with field conditions. Bidders shall visit the site of the Project before submitting a proposal to ascertain the work extents.

Drawing No. G-03, Sheet No. 3 of 159, Notes 3 and 4 (emphasis added):
Note 3: The Contractor shall verify dimensions necessary for the proper fit of concrete and steel elements prior to the fabrication of the steel. The cost of field verifying dimensions shall be included in the price bid for structural steel items.

Note 4: Horizontal. vertical, and detail dimensions and elevations shown on these plans have been obtained from the available drawings of the existing structures, and from other sources. The Contractor shall perform a field survey to establish base lines and control points and to verify all existing dimensions affecting fabrication and construction. Submit this field survey to the Engineer before shop and construction drawings are started. The Contractor shall fabricate all materials
in accordance with their own measurements and be responsible for proper fit of all work. The Engineer's approval of shop drawings shall not relieve the Contractor of this responsibility.

In accordance with the unambiguous terms of the Contract cited above, the Contractor's claims for additional compensation under Item Nos. 800.23 and 800.34 , respectively, is without merit.

As described above, the primary guide in determining whether a contractor is entitled to receive additional compensation is the contract itself. Here, the Contractor agreed that the Contract, and its obligations pursuant to same, consisted of its adherence to the terms and conditions stated in all specifications and plans. Pursuant to the Project plans and specifications cited above, it was incumbent upon the Contractor to verify all dimensions prior to fabrication; it was furthermore incumbent upon the Contractor to include the cost of same in the Amount Bid, and to conduct all necessary and proper surveys to verify field conditions. These Contract provisions clearly and unambiguously establish that the parties intended for the Contractor to rely upon its own personal investigation, which included verifying conditions and dimensions which affect the Project. It necessarily follows then that the interferences to the upper and lower flange of Floorbeam 5 occurring during on November 13, 2017 and February 15. 2018 were either known or should have been known by the Contractor.

As such, the Contractor's claim for additional compensation under Item Nos. 800.23 and 800.34 is denied.
c. Item No. 698.93940015 - Disincentive Assessment.

Under Item No. 698.93940015. substantial completion of all I/D Work was required on or before November 22. 2017. The work was not substantially complete until May 24, 2018 183 days beyond the required substantial completion date. Therefore. pursuant to the Special Notice section of the Contract, a disincentive assessment in the sum of $\$ 366.000 .00$ (183 days x $\$ 2.000$ /day) must be deducted from money due to the Contractor. The County offers the email, dated May 25. 2018, attached hereto as Exhibit " G " in support of the May 24, 2018 substantial completion date.

IV. CONCLUSION

Claim No. 1. - Deducting the $\$ 366,000.00$ disincentive assessment under Item No. 698.93940015 from the sum of $\$ 1,061,745.60$ due the Contractor under Item 589.01, it is the final determination of the Commissioner that the Contractor is entitled to a payment of $\$ 695,745.60$ under and pursuant to the terms of the Contract for Claim No. I.

Claim No. 2 - It is the determination of the Commissioner that the Contractor is due no payment under Claim No. 2 - Item Nos. 800.23 and 800.34.

Dated: White Plains, New York
August 272020

EXHIBIT A

DEPARTMENT OF PUBLIC WORKS - DIV. OF ENGINEERING COUNTY OF WESTCHESTER

CONTRACTOR'S CERTIFICATE

Final Application for Payment

I, Paul Marino	Treasurer
(Name of Officer or Principal)of EE Cruz Co. Inc.	
32 Avenue of Americas, 13th Floor, New York, NY 10013	
Under Coatract No. 11-503 Rev (Addre	ntractrethabilitation of the Fulton
Avenue Bridge over Hutchinson River	(Title of Contazet)

(Contractor)
32 Avenue of Americas, 13th Floor, New York, NY 10013
nder Contract No \qquad for
(Title of Contuact)
said Contract having been made between the said Contractor and the County of Westchester, do hereby certify and state with respect to work performed under said Contract through and including Final Estimate No. \qquad dated October 28, 2019 (incorporated by refereace) as follows:

1. That pursuant to Section $220-\mathrm{a}, 220-\mathrm{b}, 220-\mathrm{c}$ of the Labor Law, I do hereby certify and state that the names and addresses of all approved subcontractors who performed work under this Contract are as follows:

See attached list

I further state that all of the above said subcontractors have been paid in full except for those listed in No. 2 below.
2. That pursuant to Section $220-\mathrm{a}, 220-\mathrm{b}, 220-\mathrm{c}$ of the Labor Law, I do hereby certify and state that the following subcontractors who performed work under this final estimate number and who have not been paid in full are:
$\frac{\text { Name }}{\text { Verde Electric }}$

Amount
In discussion with subcontractor

I further state that all of the above subcontractors will be paid under this final estimate.

Contract No. 11-503 Rev
Estimate No. \qquad
3. That the following is a complete list of all amounts now due and owing from said Contractor to any and all laborers for daily or weekly wages or supplements on account of said contract through and including this final estimate.
$\frac{\text { Name }}{\text { NA }}$

4. That the following is a full and true statement of all unpaid bills and liabilities incurred on this contract covering work performed up to and including the above described final estimate.

5. That the Contractor submits this Certificate and accompanying material in support of his final claim for payment and the Contractor states that it has no other outstanding claims against the County in regard to the above-captioned contract.
CONIRACTOR FIRM NAME: EE Cruz Co. Inc.

STATE OF NEW YORK)
COUNTY OF WESTCHESTER) ss.:
CITY OF New Yak

being duly sworn, deposes and says that he is the

(Title)

Contractor named in the foregoing Certificate and Statement and the person who executed the same; that he is duly authorized to execute said Certificate and Statement on behalf of said Contractor; that (s)he has read such Certificate and Statement subscribed by him (her) and knows the contents thereof; and that the same is true of his (her) own knowledge.

Subscribed and swot to before me This II day of Feloruany 2002020
Ale B. Wieland

Notary Public, Westchester County

Rehabilitation of the Fulton Ave Bridge over Hutchinson River
Contract No. 11-503

No.	Firm Name
1	50 STATES
2	ABATEMENT UNLTD
3	CHAMPION PAINTING
4	CUSTOM EXTERIOR
5	CUSTOM MARINE
6	GIBRALTER
7	GRESHAM
8	JC MACHINE WORKS
9	M\&H CONTRACTING
10	MENGLER
11	VERDE ELECTRIC

EXHIBIT B

CO. INC.

February 12, 2020
Letter Log No L-022

Mr. Hugh J. Greechan, Jr. P.E.
County of Westchester
Department of Public Works and Transportation
148 Martine Ave., Rm. 518
White Plains, NY 10601
Re: Contract No. 11-503-REV, Rehabilitation of the Fulton Avenue Bridge Over Hutchinson River Item 589.01 - Removal of Existing Steel - Additional Quantities

Dear Mr. Greechan:
Further to our numerous meetings on this subject and in connection with the referenced contract, E.E. Cruz \& Company, Inc. ("E.E. Cruz") disputes the County of Westchester's refusal to issue payment for additional quantities of item 589.01 - Removal of Existing Steel at the unit price indicated in E.E. Cruz's proposal. Pursuant to the contract executed between the County of Westchester and E.E. Cruz on May 12, 2016, the County explicitly agreed to issue payment at the unit prices set forth in the proposal for all additions to the original quantities. Moreover, E.E. Cruz is required to accept such unit prices for additional quantities. Specific reference is made to page four of the contract (Exhibit 1) which states;
"....benween the parties to this Contract that the Contractor will accept the unit prices named in the proposal for all additions to or deductions from the original quantities as given in the specifications. It is agreed that the Commissioner will make estimates of the value for the work completed as provided in the specifications and the final estimate will be made accordingly. "

Furthermore, paragraph 10 of the Proposal Requirements (Exhibit 2) states;
"... indersigned does hereby' ugree to accept their indicated lump sum price for the total work and/or. their indicated unit prices for various items of the work as the sole basis in determination of the value of addition to, or deduction from the specified scope of contract work"

Information for Bidders, Article 19 - Increase or Decrease of Quantities: Elimination of Items (Exhibit 3) states;
*...the Contractor agrees that guantities shown on the Proposal Pages opposite items of the work for which unit prices have been requested are approxinate estimated quantities, and during the progress of work the County may find it udvisable and shall have the right to ...increase and decrease the shown approximate estimated quantities...
The Contractor shall make no claim for anticipated profits or loss of profits. because of any difference between the quamities of various classes of work actually done..."
E.E. Cruz is merely seeking exactly what the contract requires: payment of additional quantities at the unit price bid. There simply is no contractual basis for denying payment of the additional quantities under item 589.01 at the unit prices set forth in E.E. Cruz's proposal.

It has been over 2 years since EE Cruz have removed existing steel identified on contract drawings and requested payment under 589.01 - Removal of Existing Steel bid item. Contract quantity for this bid item is $178,684 \mathrm{lbs}$ and Westchester County has paid EE Cruz up to this bid quantity.

EE Cruz removed $340,184 \mathrm{lbs}$ of existing steel and requested an additional payment under the referenced bid item for $161,500 \mathrm{lbs} @ \mathbf{\$ 8} / \mathrm{lb}=\$ 1,292,000$. Westchester County has acknowledged total existing steel removal quantity as $320,263 \mathrm{lbs}$, but only paid EE Cruz up to the contract quantity.

Pursuant to the contract requirements stated above, we hereby request immediate payment for this bid item at a minimum up to the undisputed quantity of $320,263 \mathrm{lbs}$ as acknowledged by Westchester County for a total of \$1,132,632

EE Cruz reserves all of its rights not only to payment for additional quantities under this bid item, but also for the interest charges for over two years for monies withheld unfairly despite crystal clear contract language.

If you have any questions regarding our request herein. please do not hesitate to call Kadir Ozbek at 917-335 2388.

Very truly yours,

Paul Marino
Treasurer
E.E. Cruz and Company, Inc.

CC: R. Donnelly, K. Roseman (WC)
JohnPaul Cunningham (HDR)
J. Sheehan, Bill Riley (EEC)
P. Monte, J. Egan, Esq.

EXHIBIT C

February 12, 2020
Letter Log No L-023
Mr. Hugh J. Grecchan, Jr. P.E.
County of Westchester
Department of Public Works and Transportation
148 Martine Ave., Rm. 518
White Plains, NY 10601
Re: Contract No. 11-503-REV, Rehabilitation of the Fulton Avenue Bridge Over Hutchinson River 800.23 - Floor Beam 5 Upper Flange Interference
800.34 - Floor Beam 5 Bottom Flange Interference

Dear Mr. Greechan:
Further to our numerous meetings on this subject and in connection with the referenced contract, E.E. Cruz \& Company, Inc. ("EEC"') disputes the County of Westchester's (WC) refusal to issue payment for additional cost incurred due to in-field modifications required along the top and bottom flanges of Floorbeam 5 (FB5). Below we remind you of the time line of events on this subject and the fact that WC was given due notice as detailed on the attached Exhibits.

Time line of events:

- 11/13/2017 - EEC discovered multiple constructability interferences during the operation of the bridge.
- 11/16/2017 - EEC put HDR/WC on notice regarding constructability interferences related to FB5 and requested a change order (Exhibit 1).
- 11/22 thru 12/07/17-EEC incurred costs with respect to these interferences and remedy work that was necessary to make the bridge operational for barge traffic. These additional costs were documented on T\&M sheets and submitted to WC.
- 12/7/2017 - EEC submitted its letter L-016 and informed HDR/WC of costs it had incurred between 11/22 and 12/07 and requested compensation (Exhibit 2)
- On 02/15/2018 via an email, EEC informed HDR/WC of further interferences related to FB5 stating "...during final balancing of the Mount Vernon Leaf (West Side) we noticed that at 53 degrees the bottom flange of FB5W was bidding against the top flange of counter weight slab armored joint. We couldn t raise the leaf any further in order to reach the 70 degree required per spec... " (Exhibit 3)
- On or about $4 / 9 / 2018, H D R$ issued a DRAFT drawing showing Upper Flange Interference (previously removed between $11 / 22$ and $12 / 7$) and contemplated removal of the bottom llange to address recent interference issue (Exhibit 4).
- 4/11/2018 - EEC submitted its letter L-018 and informed HDR/WC of the direct and indirect (time related) costs of this FB5 bottom flange interference (Exhibit 5).
- 6/4/2018 - HDR issued its findings related to FB5 interference (Exhibit 6). These findings can be summarized as follows:
- Referred to the complicated nature of the problem and several site visits and surveys conducted by 50 States (EEC's survey sub), M.J. Engineering (HDR sub) and HDR itself
- Acknowledged the FB5 interference and the necessity to cut bottom flange by $37 / 8^{*}$
- HDR was able to confirm that the top of deck at the trunnion location is approximately 2° $-61 / 2^{*}$ above the centerline of trunnion, which HDR claimed to be consistent with the trunnion location identified in the 1971 as-built plans and the dimension HDR utilized in the original design plans.
- HDR provided a model depicting how the leaf would have cleared FB5 based on these dimensions (which they believed are to be correct)
- HDR concluded its letter by putting blame on EEC for not performing condition surveys in two stages and contemplated that this issue would have been recognized and mitigated ahead of time
- 6/12/2018 - EEC issued a detailed response to HDR's letter (Exhibit 7):
- Compared As-Built drawings and Contract drawings and clearly and unarguably showed that HDR's new design reduced available distance between existing FB5 and newly constructed fixed edge of the deck joint by $29 / 16^{\circ}$
- Pointed out to two issues represented on HDR's letter:

1. HDR's model used the deck joint at the location shown on the current contract drawings, which is not the case as proven by as-built drawings
2. HDR's flawed model still only yielded to a $1 / 8$ ' clearance between FB5 bottom flange and fixed end joint which by no means is adequate or practical for a moveable bridge

- Pointed out that per contract requirements FB5, FB6 and main girder trunnions were to remain as per original contract scope of work.
- Concluded that:

1. During the design, HDR changed the location of the entire deck joint assembly, which led to the interference between FB5 and the fixed part of deck joint
2. There were no contractual requirements for pre and post survey of existing members
3. HDR should have performed these surveys during the design phase considering that HDR had changed the location of deck joint,

- 6/13/2018 - HDR replied to EEC's letter. but instead of providing explanation on the reasons behind moving the entire joint assembly, restated positions from their original letter dated 6/4/2018. Furthermore directed EEC to keep T\&M forms tracking cost (Exhibit 8)
- 6/15/2018 - EEC replied to HDR's letter stating that work will be performed under protest and EEC will keep daily T\&M sheets (Exhibit 9).
- $6 / 18$ thru $6 / 29 / 18$ - EEC proceed with clearing out the interference as per details provided by HDR. These additional costs were documented on T\&M sheets and submitted to WC.
- Throughout 2018 and 2019, EEC, HDR and WC conducted several technical and change order negotiation meetings for FB5 interference issue. At the end of these meetings, HDR/WC agreed with EEC's position that HDR's new design moved the joint closer to the operation of the bascule span and EEC is entitled for compensation. However, HDR/WC insisted on their position that pre deck demolition and post deck demolition as-built surveys would have caught this problem ahead of time and resulted in a more cost efficient fix.

Conclusion

Pursuant to the contract executed between the WC and EEC on May 12, 2016, both parties agreed that EEC was to provide the final product exactly as it was laid out in the plans, specifications and drawings that had been previously reviewed and approved by WC.

Page one of the contract (Exhibit 10) explicitly states:
"Said Contractor, shall amd will... provide all mamer and kind of materials... necessary; for the due and proper performance of this Contract ...in conformity with said plans and specification without any alteration, deviation, additions, or omissions therefrom except upon due request and under the written direction of said Commissioner: "

In other words. EEC was contractually obligated to construct the bridge according to the information provided by the WC. Thus, EEC is not responsible for extra costs resulting from inherent flaws with, or discrepancies between, the as-built condition and proposed design.

FB5 interference issues are a direct result of relocation of the joint assembly (moving it closer to the swing of the bascule span) during the design phase.

Contract had no pre deck demolition and post deck demolition survey provisions
Even if EEC had performed these pre and post deck demolition surveys, it would have still followed the contract documents and constructed the deck joint exactly as shown on the contract drawings. EEC would have no reason to doubt that HDR had a design mistake with the location of the deck joint.

Only a pre-construction full design review of contract drawings would have allowed the project team to identify this design mistake ahead of time. A full design review was not a contract requirement.

EEC cannot be held responsible for time and cost implications of FB5 interference.

Quantum:

EEC submitted its associated cost to WC for values of $\$ 53,570.80$ and $\$ 415,000.00$ for modifications required along the top and bottom flanges of FB5 respectively. Upon a more detailed review of the work required and backup information subsequently submitted by EEC's subcontractors, EEC hereby revises its proposals for change order 800.23 to $\mathbf{\$ 6 1 , 2 8 0 . 0 3}$ for modifications to the top flange of FB5 (Exhibit 11), and for change order 800.34 to $\$ 391,438.27$ for modifications to the bottom flange of FB5 (Exhibit 12).

We hereby request a fair evaluation of these outstanding change orders and an expedited payment for this work totaling $\mathbf{S 4 5 2 , 7 1 8 . 3}$

EEC reserves all of its rights for the interest charges for over two years for monies withheld unfairly despite crystal clear contract language.

If you have any questions regarding our request herein, please do not hesitate to call Kadir Ozbek at 917-335 2388.

Very truly yours,

Paul Marino
Treasurer
E.E. Cruz and Company, Inc.

CC: R. Donnelly, K. Roseman (WC)
JohnPaul Cunningham (HDR)
J. Sheehan, Bill Riley (EEC)
P. Monte, J. Egan, Esq.

Attachments: Exhibits 1 thru 12

EXHIBIT D

From: Cunningham, JohnPaul
Sent: Monday, September 16, 2019 11:39 AM
To: Ozbek, Kadir KOzbek@eecruz.com
Cc: Roseman, Kevin kmr5@westchestergov.com: Hajjeh, Khaled <Khaled. Hajieh@hdrinc.com>
Subject: Item 589.01 (Steel Removal) quantity total
Kadir,

I just wanted to let you know that we further investigated the Steel Removal (Item 589.01) and checked our calculation numbers from a couple of different angles.

One of the ways we did this was by using the balancing calculations that you provided. We took the tables and deducted out the quantities that were not payable per the specification. With these deductions the payment quantities for the two bascule spans are 132,667.1 on the Mount Vernon spreadsheet and 133,824.7 on Pelham Manor spreadsheet. For your information the largest of the deductions was for Concrete that was included in the calculation. As an example, $43,377.4$ lbs were deducted (from the original $187,902.3$) for the concrete weight on the Mount Vernon spreadsheet. Other deductions included welds, bolts, etc. Utilizing these numbers, a total of $266,491.8$ pounds were removed on the Bascule spans.

As for the counterweight spans, we utilized the project plans and confirmed our previous estimate (including reviewing photos, emails and previous spreadsheets) of $44,910.4 \mathrm{lbs}$. Please note that the steel removed at the counterweight spans was significantly lighter than the steel that was subsequently installed.

Therefore, the total quantity for item 589.01 to be paid is $266,491.8 \mathrm{lbs}$ plus $44,910.4 \mathrm{lbs}$ or $311,402.2 \mathrm{lbs}$. With the original contract value of $178,684 \mathrm{lbs}$ this represents an overrun of $132,718.2 \mathrm{lbs}$.

John Paul

John Paul Cunningham Jr., PE, CCM
Hudson Valley Area Manoger
HOR
711 Westchester Ave. Suite 103
White Plains, NY 10604
D 914.993.2004 M 914.290.3108
johnpaul.cunningham@hdrinc.com
hdrinc com/follow-us

EXHIBIT E

exhibit e

ITEM 589.01
Total Quantity Removed (Ibs)

Mount Vernon	$132,687.1 \mathrm{lbs}$
Pelham Manor	$133,824.7 \mathrm{lbs}$
Counterweight Spans (Both)	$44,910.4 \mathrm{lbs}$
Total Steel Removed	$\mathbf{3 1 1 , 4 0 2 . 2} \mathrm{lbs}$
Contract Quantity	$178,684.0 \mathrm{lbs}$
Overrun	$\mathbf{1 3 2 , 7 1 8 . 2} \mathrm{fbs}$

132,718.2 tbs

DETAILED ANALYSIS OF BALANCE PROGRESS
FULTON AVE. BASCULE BRIDGE
$\begin{array}{ll}\text { Leaf: } & \text { Mount Vemon (West) } \\ \text { Date: } & 08101120\end{array}$
$\begin{array}{ll}\text { Date: } & \text { 08/0tr20 } \\ \text { Time: } & 3: 37 \mathrm{PM}\end{array}$
Group

Subgroup	Element Description Deslan Drawings

Mark
Shop drawings

$\underset{\text { Horiz. As }}{\substack{\text { As } \\ \text { Hit }}}$
$Y(f t)$
$Z(t)$
$W x(f t-1 \mathrm{~b}) \quad W y(\mathrm{f} \cdot \mathrm{lb}) \quad \mathrm{Wz}(\mathrm{f}-\mathrm{lb})$
1 Removals
1 BASCULE STEEL

Sidewelk Support Piate	Girders	FB1-FB2	1	171.8	171.8	52.584	3.994	0.000	9,035.9	688.3	0.0
Bevalled Fal Platis	Ginders	FB1-FB2	1	204.1	204.1	52.584	4.039	0.000	10,730.1	824.2	0.0
$5 / 10^{\circ}$ Weld	Girters	FB1-FB2	1		13.5	52.584	3.994	0.000	0.0	0.0	0.0
Sidewank Stingere 12WF31	Sutingers	FB1-FB2	1	1,038.5	1,038.5	52.584	3.413	0.000	54,600.5	3.544.4	0.0
$7 / 16^{\circ}$ Shims	Stringers	FB1FP2	1	29.0	29.0	52.584	2895	0.000	1,526.5	84.0	0.0
Botis in Bottom Fiange	Stingar	FB1-FB2	1		6.5	52.584	2.895	0.000	0.0	0.0	0.0
Rosdway Stingurs	Stingers	FB1FE2	1	4,690.0	4,690.0	52.584	2.272	1.000	246,619.0	10,655.7	4,690.0
Cope in Top Flange	Stingers	FB1-FB2	1	-57.8	-57.8	52.584	3.005	1.000	-3,041.8	-173.8	-57.8
Cope in Wob	Sutruers	FB1-F82	1	-23.8	-23.8	52.584	2.841	1.000	-1,252.5	-67.7	-23.8
3×3 Connection Andes	Stingers	FP1-TE2	1	300.8	300.8	52.584	2.189	1.000	15,817.3	658.5	300.8
718. Boltr	Stringeris	FB1-FB2	1		116.6	52.584	2.189	1.000	0.0	0.0	0.0
Plondway Stingers	Stingers (R8S)	FB1-FB2	1	2,931.3	2.931 .3	52.584	2.272	-1.600	154,136.9	6,659.8	-4,690.0
Copa in Top Flanga	Siringers (RS:S.)	FB1-FB2	1	-36.2	-36.2	52.584	3.005	-1.800	-1,901.2	-108.6	57.8
Copetin Wob	Stingers (R\&S)	FB1-FB2	1	-14.9	-14.9	52,584	2.841	-1.600	-782.8	-42.3	23.8
3×3 Connection Anglear	Stringers (RisiS.)	FB1F[${ }^{\text {2 }}$	1	188.0	188.0	52.584	2.189	-1.600	9.885 .8	411.5	-300.8
$78^{\circ} \mathrm{Bolts}$	Sthagert (R:SS)	FB1FB2	1		72.9	52.584	2.189	-1.600	0.0	0.0	0.0
Rondwny Sthigers 33, 80, 513	Stingera To Rembin	FB1-782	1		-1.759.8	52.584	2.272	0.000	0.0	0.0	0.0
Copain Top Flanga	Stringers To Remaln	FB1:F82	1		21.7	52.584	3.005	0.000	0.0	0.0	0.0
Copall Wéb	Sutigers To Roman	FB1-FB2	1		8.9	52.584	2.841	0.000	0.0	0.0	0.0
$3 \times \$$ Connwetion Andise	Sringor To Remain	FB1FER2	1		-112.8	52.584	2.189	0.000	0.0	0.0	0.0
78° Botis	Sutingers To Ramaln	FB1-FB2	1		-43.7	52.584	2.189	0.000	0.0	0.0	0.0
Chamel 10.C25	Stiowatk Charnele	F-B1FB2	1	841.7	841.7	52.584	3.439	0.000	44.257 .3	2,894,4	0.0
	Sidewalk Channols	FB1-FB2	1		55.1	52.584	3.022	0.000	0.0	0.0	0.0
Bracho Type 1 (Unider Sidowelk)	Letaral Bracing	FB1-FB2	0	430.2	430.2	52.584	1.422	0.000	0.0	0.0	0.0
Alaing Type 2 (Suthger 53-6,511-13)	Lsteres Eracing	FR1-FB2	0	360.8	360.8	52.584	1.422	0.000	0.0	0.0	0.0
Bruching Type 3 (Striper S8-8,S8-11)	Latoral Braching	F1FP2	0	464.3	484.3	52.584	1.422	0.000	0.0	0.0	0.0
Guscet Plate at Men Ghrders	Typo 11 Bricing	FB1FB2	0	76.6	76.6	52.584	1.507	0.000	0.0	0.0	0.0
$4 \times 4 \times 1 / 2$ Anclo	Type 1 brocig	FB1-F32	0	38.4	38.4	52.584	1.422	0.000	0.0	0.0	0.0
Botsin Anda.	Type 1 Bricing	FB1FB2	0		9.7	52.584	1.422	0.000	0.0	0.0	0.0
Prite $9 \times 14 \times 1 / 2$	Type 1 Breining	FB1-FB2	0	20.4	20.4	52.584	1.422	0.000	0.0	0.0	0.0
Bolta in Plato	Typol Brectig	FB1FP32	0		9.7	52.584	1.422	0.000	0.0	0.0	0.0
Bdis in Braing Typo 1	Typo 1 Brach	FB1-F82	0		45.4	52.584	1.507	0.000	0.0	0.0	0.0
Guthat Pris)-hther ($033,88,518$)	Type 182 Brichin	F1+PB2	0	229.7	229.7	52.584	1.507	0.000	0.0	0.0	0.0
Botinin Gussol Plata	Type 182 Bracing	FB1-FB2	0		583	52.584	1.507	0.000	0.0	0.0	0.0
Gussot Phte at FB1, FB2 ($055, \mathrm{Si1}$)	Type 3 Bracing	FB1-FB2	0	153.1	153.1	52.584	1.507	0.000	0.0	00	0.0
4×4 Suppori Angles	Type 3 Bracing	FB1FB2	0	76.8	768	52.584	1.422	0.000	0.0	00	0.0
Bolts in Gusset Plata	Type 3 Brsicing	F81-782	0		77.8	52.584	1.507	0.000	0.0	00	0.0
Main Bars	Roasway Grid	FB1-FB2	1	7.934 .3	7.934.3	52.584	3.204	0.000	417,216.4	25,421.4	0.0
Cruse bare	Roadway Grid	FB1-FB2	1	5,556.9	5,556.9	52.584	3.356	0.000	292,206.6	18,649.1	0.0

Page 1 of 10

DETAILED ANALYSIS OF BALANCE PROGRESS
FULTON AVE, BASCULE BRIDGE

Leaf: Date: Tlme:	Mount Ver $06101 / 20$ 3:37 PM	(West)												
Group	Subgroup	Element Description Design Drawings	Mark Shop drawings	Location	$\begin{aligned} & \text { Installed } \\ & t=Y \text { Yes } 0=\mathrm{No}_{0} \end{aligned}$	Date Installed	$\begin{gathered} \text { HDR } \\ \text { Weight (ll) } \end{gathered}$	Gresherns Weloght	$x(t)$ Horiz. Asm	$\begin{gathered} Y(f t) \\ \text { Vert. Arm } \end{gathered}$	$\begin{gathered} Z(t) \\ \text { Trans. Asm } \end{gathered}$	Wx (tt-lb)	Wy ($\mathrm{f} \cdot \mathrm{lb}$)	Wz (f - lb)
		Bolidown Ptata bdpe	Stwk Panels d, AF	FB1-FB2	1		753	75.3	51.052	3.962	0.000	3,848.7	298.5	0.0
		Bots in bdip 9	Sodvk Panola J, AF	FB1-FB2	1			6.5	51.052	3.962	0.000	0.0	0.0	0.0
		Plate pk	Stuk Panels J, AF	FB1-FB2	1		607.1	8071	51.052	4.250	0.000	30,992.0	2.580 .0	0.0
		Wald M Bars if Plate pk	Stwk Panels J, AF	FB1-FB2	1			3.9	51.052	4.239	0.000	0.0	0.0	0.0
		Trimbarbs	Sowk Panals J, AF	FB1-FB2	1		21.5	21.5	51.052	4.114	0.000	1,099.0	88.6	0.0
		Woid atM Bars with Trim Bare	Sdwk Panols I, AF	FB1.FB2	1			2.6	51.052	4114	0.000	0.0	0.0	0.0
		Trim'Bara b21, b22	Sodk Panels J, AF	FB1-FE2	1		21.0	21.0	51.052	4.114	0.000	1,070.3	86.3	0.0
		Cut in Plata pk	Sdwk Panels J, AF	FB1-FB2	1		-1.7	-17	51.052	4.250	0.000	-85.3	.7.1	0.0
		M Bars	Sturk Panels Ca, C9	FB1-F82	1		755.1	755.1	47.000	4.089	0.000	35.490.2	3,087.6	0.0
		C Bars	Stwk Panels C3, C9	FB1-FB2	1		53.6	53.6	47.000	4.199	0.000	2.519 .8	225.1	0.0
		Bohoown Plates, bdp32, bdo33	Sodwk Panels C3, C9	FB1-FE2	1		62.9	62.9	47.000	3.951	0.000	2,956.1	248.5	0.0
		Bolts in bap32, bda33	Sdurk Panols C3, CB	FB1-FB2	1			6.5	47.000	3.951	0.090	0.0	0.0	0.0
		Bolidown Plate bdp2	Sciwk Panols C3, Ce	FB1-FB2	1		129.2	1292	47.000	3.941	0.000	6,070.9	509.1	0.0
		Bolts in bdje	Sowk Panela C3, C9	FB1.FB2	1			6.5	47.000	3.941	0.000	0.0	0.0	0.0
		Bobriom Platicman		FB1-FB2	1		75.3	75.3	47.000	3.937	0.000	3,541.4	296.6	0.0
		Bolts in' bdpo	Satwk Panels C3, CO	FB1-FB2	1			65	47.000	3937	0.000	0.0	0.0	0.0
		Plate pk	Stivk Panels C3, Co	FB1-FB2	1		607.1	607.1	47.000	4225	0.000	28,532.2	2,564.9	0.0
		Weld M Bare to Plata pk	Sowk Parnals C3, ${ }^{\text {ce }}$	F81-FB2	1			3.8	47.000	4.214	0.000	0.0	0.0	0.0
		Trim Bar b8	Stuk Panels C3, Ce	FP1-F82	1		21.5	21.5	47000	4.089	0.000	1,011.8	88.0	0.0
		Woid at M Bars whth Timm Bers	Stwik Panela C3, CO	FB1FB2	1			2.6	47.000	4.089	0.000	0.0	0.0	0.0
		Trin Eara b21, 622	Sownk Panols C3, CD	FB1-FB2	1		21.0	21.0	47.000	4.089	0.000	885.4	85.7	0.0
		10: Romiwey Gidd Stiob	At FE1	FB1-FB2	1		-1.125.5	-1.125.5	60.688	3.249	0.000	-68,304.3	-3,656.7	0.0
		10° Stringer Stubs	A F FB1	FB1FB2	1		-262.5	-262.5	60.583	2.228	0.000	-15,003.0	-584.9	0.0
		Cope In Top Flange	At FB1	FB1-FB2	1		. 72.3	72.3	60.583	3.005	0.000	-4,380 7	-217.3	00
		Copo in Weo	At FB1	FB1-FB2	1		-29.8	29.8	60.583	2.841	0.000	-1,803.7	-84.6	0.0
		10° Roidway Grd Sut	At FB2	FP1-FB2	1		-900.4	-900.4	44583	3.171	0.000	-40,142.5	-2,855.2	0.0
		10° Stringer Stubs	AI FB2	FB1-FB2	1		-262.5	-262.5	44.583	2.150	0.000	-11,703.0	. 564.4	0.0
		Cope in Top Flange	At FB2	FB1-FB2	1		-72.3	72.3	44.583	3.005	0.000	-3,223.8	-217.3	0.0
		Cope in Wib	A1 FB2	FB1FB2	1		-29.8	29.8	44.583	2.841	0.000	-1,327.4	-84.6	0.0
	Subtotal	Bay 3 Steal (FB 1 to FB2)					33,681.7	33.544.5	49.748	3.083	0.000	1,675,581.6	103,842.9	0.0
		Bay 2 Steel (FB2 (0 FB3)												
		Sidewalk Support Plate	Girders	FB2-FB3	1		171.8	1718	35.751	3.847	0.000	6,143.3	601.1	0.0
		Beveltad Fill Plata	Girders	FB2-FB3	1		204.1	204.1	35.751	3893	0.000	7.295 .2	794.4	0.0
		$5116{ }^{\text {W }}$ Weld	Girders	FB2-FB3	1			13.5	35.751	3.847	0.000	0.0	0.0	0.0
		Sidowalk Stringers	Suthgers	FB2-Fb3	1		1,038.5	1.038 .5	35.751	3.267	0.000	37,127.4	3,392.8	0.0
		7/16 Shims	Stingers	FB2-FB3	1		29.0	290	35.751	2.767	0000	1.037 .9	80.3	0.0
		Bolts in Bottom Flange	Sutingers	FB2-FB3	1			65	35.751	2767	0.000	00	0.0	0.0
		Roadway Siringers W 18 B 36	Stringers	FB2-FB3	1		5,862.5	5,862 5	35.751	2126	0.800	209.590.2	12.463.7	4,690.0
		Cope in Top Flanga	Stungers	FB2-FB3	1		-72.3	-723	35.751	2.858	0.800	-2,585.1	-206.7	-57.8
		Copa in Web	Stingers	FB2-FB3	1		-298	-298	35.571	2.695	0.800	-1,059.1	-80.2	-23.8
		3×3 Connection Angles	Stringers	FB2-FB3	1		376.0	376.0	35571	2043	0.800	13,374.7	768.2	300.8

Page 3 of 10

DETAILED ANALYSIS OF BALANCE PROGRESS
FULTON AVE. BASCULE BRIDGE

DETALED ANALYSIS OF BALANCE PROGRESS
FULTON AVE. BASCULE BRIDGE

Leaf: Data: Time:	Mount Vern 0610120 3:37 PM	(Wost)												
Group	Subgroup	Elamant Description Design Drawings	Mark Shop drawings	Location	$\underset{\substack{\text { Installed } \\ 0 \\ 0}}{ }$	Date Installed	HOR Welght (ib)	Grastian Wolght	$\begin{gathered} X(f t) \\ \text { Horlz. Arm } \end{gathered}$	$\begin{gathered} Y(f t) \\ \text { Vert. Arm } \end{gathered}$	$\begin{gathered} z(f) \\ \text { Trans. Arm } \end{gathered}$	Wx ($\mathrm{f}-\mathrm{lb}$)	Wy (ft-lb)	Wz ($\mathrm{ft}^{\text {l }} \mathrm{l}$)
		Bolidown Plate bdpo	Sdwik Panels H, AE	FB2FE3	1		75.3	75.3	42.948	3.903	0.000	3,236.0	299.1	0.0
		Bolts in bdpo	Sduk Panels H, AE	FB2-FB3	1			6.5	42.948	3.903	0.000	0.0	0.0	0.0
		Plate pk	Sowk Panels H, AE	FB2-FB3	1		607.1	607.1	42.948	4.191	0.000	26.072.4	2.544 .2	0.0
		Weld M Bars to Plata plo	Sowt Panela H, AE	FB2-FB3	1			3.9	42.948	4.180	0.000	0.0	0.0	0.0
		Trin Bar bo	Sowk Panels H, AE	FB2-FE3	1		21.5	21.5	42.94B	4.055	0.000	924.6	87.3	0.0
		Weld at M Bars with Trim Bars	Sowik Panela H,AE	FB2-FB3	1			2.6	42.948	4.055	0.000	0.0	0.0	0.0
		Trim. Bers b21, b22	Sduk Panels H. AE	FB2-FB3	1		21.0	21.0	42.948	4.055	0.000	900.4	85.0	0.0
		Cut in Plata ple	Sowk Panels H, AE	FB2-FB3	1		-1.7	-1.7	42.948	4.181	0.000	-71.8	-7.0	0.0
		M Bars	Sdwe Pancos G, AD	FB2-FBS	1		755.1	755.1	38.896	4.014	0.000	29,370.8	3.031 .0	0.0
		CBars	Sdwe Panels G, AD	FE2-FB9	1		53.6	53.6	38.896	4.124	0.000	2,085.3	221.1	0.0
		Bolidown Platen, bdp32, bdp33	Stuk Pancls G, AD	FB2-FB3	1		62.9	62.9	38.896	3.876	0.000	2,446.4	243.8	0.0
		Bots in bdp32, bdp33	Sidk Pands G, AD	FB2-FB3	1			6.5	38.896	3.878	0.000	0.0	0.0	0.0
		Botidown Pleta bdp?	Solwk Panek G, AD	FB2-FB3	1		129.2	129.2	38.896	3.866	0.000	5.024 .1	499.4	0.0
		Bolts in bdp2	Sduk Panols G, AD	FB2-FB3	1			6.5	38.896	3.866	0.000	0.0	0.0	0.0
		Bolldown Ptititidip	Sowk Peneis G; AD	FB2FB3	1		753	75.3	30.898	3.862	0.000	2.9307	291.0	0.0
		Botts in bdpg	Sowk Pancla G; AD	FB2-FB3	1			6.5	38.896	3.862	0.000	0.0	0.0	0.0
		Plita pk	Sowk Panels G, AD	FB2-FB3	1		607.1	607.1	38.896	4.150	0.000	23.612 .5	2.519 .3	0.0
		Wold M Bars to Ptatas pk	Sdwk Panels G, AD	FA2-FB3	1			3.8	38.896	4.139	0.000	0.0	0.0	0.0
		Timm Bar.b8	Stwk Panele G, AD	F82-FB3	1		21.5	21.5	38.896	4.014	0.000	837.4	86.4	0.0
		Weld at M Burs with Trim Bars	Stwk Panels G, AD	FB2-FB3	1			2.6	38.896	4.014	0.000	0.0	0.0	0.0
		Tran Bare b21, b22	Sowk Pancts G, AD	FB2-FB3	1		21.0	21.0	38.896	4.014	0.000	815.5	84.2	0.0
		Cut h Plate pk	Sowk Panela B, AD	FB2-FB3	1		-1.7	-17	38.898	4.150	0.000	-65.0	-6.9	0.0
		M Ban	Sowk Panels F, AC	FB2-fB3	1		755.1	755.1	34.84 .4	3.864	0.000	26,311.1	2.993 .3	0.0
		CBara	Sdwk Panels F, AC	FB2-FB3	1		53.6	53.6	34.844	4.074	0.000	1,868.1	218.4	0.0
		Bohdown Plates, bdp32, bdj33	Sowk Panels F, AC	FE2-FB3	1		62.9	62.9	34.844	3.826	0.000	2,191.5	240.6	0.0
		Botis in bdp32, bdp33	Sdwk Panels F. AC	FB2-FB3	1			6.5	34.844	3.826	0.000	0.0	0.0	0.0
		Bohdown Plate bdp2	Sdwk Panels F, AC	FB2-FB3	1		129.2	129.2	34.844	3.816	0.000	4,5007	492.9	0.0
		Bolis in bdp?	Sowk Panels F, AC	FB2-FB3	1			6.5	34.844	3.816	0.000	0.0	0.0	0.0
		Boltidown Plata botpo	Sdwk Pancts F, AC	FB2-FB3	1		75.3	75.3	34.844	3.812	0.000	2,625.4	287.2	0.0
		Bolts in bdips	Sdwk Panels F, AC	FB2-FB3	1			6.5	34.844	3.812	0.000	0.0	0.0	0.0
		Pfate pk	Stwik. Panels F, AC	FB2-FB3	1		607.1	607.1	34.844	4.100	0.000	21,152.7	2,489.0	0.0
		Weld M Bars to Plate ph	Stuk Panels F, AC	FB2-783	1			39	34.844	4.089	0.000	0.0	0.0	0.0
		Trim Barbs	Sowk Panels F, AC	F82-FB3	1		21.5	21.5	34.844	3.964	0.000	750.1	85.3	0.0
		Wold at M Bers with Tifm Bars	Sdwk Panels F, AC	FB2-FB3	1			26	34.844	3.984	0.000	0.0	0.0	0.0
		Trim Bars b21, b22	Sdwk Panels F, AC	FB2-FB3	1		21.0	21.0	34.844	3.964	0.000	730.5	83.1	0.0
		Cut in Plate pk	Sidk Prinels F, AC	FB2-FB3	1		-1.7	-1.7	34.844	4.100	0.000	-58.2	-6.9	0.0
		M Bers	Sdwk Panels C2, C8	FB2-FB3	1		755.1	755 :	30.792	3.907	0.000	23,251.3	2.950 .2	0.0
		C Bera	Stwk Panols C2, C8	FB2-FB3	1		53.6	53.6	30.792	4.017	0.000	1,650.8	215.4	0.0
		Bolidown Plates, bdp32, bdp33	Scuwk Panols C2, Ca	FB2-FB3	1		62.9	62.9	30.792	3.769	0.000	1,936 7	237.1	0.0
		Boils in bdp32, bdp33	Sdwk Panels C2, Cs	FB2-FB3	1			65	30.792	3.769	0.000	0.0	0.0	0.0
		Botidown Plate bdp2	Sciwk Panols C2, C8	FB2-FB3	1		129.2	129.2	30.792	3.759	0.000	3.977 .3	485.5	0.0
		Bota in bop2	Sdwk Panols C2, C8	F82-FB3	1			6.5	30.792	3.759	0.000	0.0	0.0	0.0

DETAILED ANALYSIS OF BALANCE PROGRESS
FULTON AVE. BASCULE BRIDGE
$\begin{array}{ll}\text { Leaf: } & \text { Mount V } \\ \text { Date: } & 0810120 \\ \text { Time: } & 3: 37 \mathrm{PM}\end{array}$
Group

Subgroup	Elemant Description Design Drawings	Mark Shop drawings	Location	$\begin{aligned} & \text { Installed } \\ & i=Y \text { es } 0=\mathrm{No} \end{aligned}$	Date Installed	HDR Weight (lb)	Gresham Wolght	$\begin{gathered} X(t) \\ \text { Horiz. Arm } \end{gathered}$	$\begin{gathered} Y(\mathrm{tt}) \\ \text { Vert. Arm } \end{gathered}$	$\begin{gathered} 2(f t) \\ \text { Trans. Arm } \end{gathered}$	Wx ($\mathrm{f}-\mathrm{lb}$)	Wy ($\mathrm{ft-1l}$)	Wz ($\mathrm{t}-\mathrm{lb}$)
	Bolldown Plate bdpe	Stwk Panels D. AA	FB3-FB4	1		75.3	75.3	22.888	3.615	0.000	1,709.5	272.4	0.0
	Botis in bdpo	Sdwk Panela D, AA	FB3-F84	1			6.5	22.688	3.615	0.000	0.0	0.0	0.0
	Plate pk	Sdwk Panols D, AA	FB3FE4	1		607.1	607.1	22.688	3.903	0.000	13,773.2	2,369.4	0.0
	Weld M Bars to Ptate pk	Stwk Panels D, AA	FB3-FB4	1			3.9	22.688	3.692	0.000	0.0	0.0	0.0
	Trim Ear be	Sdwk Panols D, AA	FB3-FB4	1		21.5	21.5	22.688	3.767	0.000	488.4	81.1	0.0
	Weld at M Bars with Trim Bars	Sdwk Panels D, AA	FB3-FB4	1			2.6	22.688	3.767	0.000	0.0	0.0	0.0
	Trim Bars b21, b22	Sowk Panals D, AA	FB3-FB4	1		21.0	21.0	22.688	3.767	0.000	475.7	79.0	0.0
	Cut in Plate pk	Sdwk Panels D, AA	FB3-FB4	1		-1.7	-1.7	22.688	3.903	0.000	-37.9	-6.5	0.0
	M Bars	Sduk Panels C1, C7	FB3FB4	1		755.1	755.1	18.636	3.686	0.000	14,072.2	2.783 .3	0.0
	C Bars	Sowk Panels C1, C7	FB3-FB4	1		53.6	53.6	18.636	3.796	0.000	999.1	203.5	0.0
	Boldown Ptates, bdp32, bdp33	Sdwk Panels C1, C7	FB3-FB4	1		62.9	62.9	18.636	3.548	0.000	1.172.1	223.2	0.0
	Bota in bdp32, bdp33	Sdwk Panels C1, C7	FB3-FB4	1			8.5	18.636	3.548	0.000	0.0	0.0	0.0
	Bolidown Ptate bdp2	Sodwk Panels C1, C7	FB3-F84	1		129.2	129.2	18.636	3.538	0.000	2.407 .2	457.0	0.0
	Botis in bdp2	Sowk Panols C1, C7	FE3-FB4	1			6.5	18.636	3.538	0000	0.0	0.0	0.0
	Boltiown Plate bdpo	Stwk Panetr C1, e7	FB3-FB4	1		75.3	75.3	18.636	3.534	0.000	1,404.2	266.3	0.0
	Bolts in bopp	Sotuk Panels C1, C7	FB3-FB4	1			6.5	18.636	3.534	0.000	0.0	0.0	0.0
	Plate pk	Sdwk.Panals Ci, C7	FB3-FB4	1		607.1	607.1	18.636	3.822	0.000	11.313.3	2,320.2	0.0
	Wold M Barse to Plate pk	Sowk Panets C1, C7	FB3-FB4	1			3.9	18.636	3.811	0.000	0.0	0.0	0.0
	Trim Bar bs	Sowk Panels C1, C7	FB3-FB4	1		21.5	21.5	18.636	3.686	0.000	401.2	79.4	0.0
	Weld at M Bars with Trim Alars	Sdwk Panels C1, C7	FB3-FB4	1			2.6	18.636	3.686	0.000	0.0	0.0	0.0
	Trim Bars b21, b22	Sodwk Panels C1, C7	FB3-FB4	1		21.0	21.0	18.636	3.686	0.000	390.7	77.3	0.0
	M Bars	Sctwk Panets B, 2	FB3-FB4	1		755.1	755.1	14.584	3.596	0.000	19,012.5	2.715 .4	0.0
	CBar	Sowk Paneli B, Z	FB3-FB4	1		53.6	53.6	14.584	3.706	0.000	781.9	198.7	0.0
	Boltalown Ptates, bdp32, bdp33	Stukk Panels B, Z	FB3-FB4	1		62.9	62.9	14.584	3.458	0.000	917.3	217.5	0.0
	Bolts in bdp32, bdp33	Souk Panols B, Z	FE3-FB4	1			6.5	14.584	3.458	0.000	0.0	0.0	0.0
	Bottiown Plale bdp2	Sdwk Panels B, 2	FB3-FB4	1		129.2	129.2	14.584	3.448	0.000	1,883.8	445.4	0.0
	Botis in bdp 2	Sdivk Panets B, Z	FP3-FB4	1			6.5	14.584	3.448	0.000	0.0	0.0	0.0
	Botidown Plate bdpe	Sowk Panola B, Z	FB3-FB4	1		75.3	75.3	14.584	3.444	0.000	1,098.9	259.5	0.0
	Bota in bdpe	Stwk Panals B, 2	FB3-FB4	1			6.5	14.584	3.444	0.000	0.0	0.0	0.0
	Plata pk	Sowk Pands B, 2	FB3-FB4	1		607.1	607.1	14.584	3.732	0.000	$8,853.5$	2.265 .6	0.0
	Wold M Bars to Plate pk	Sounk Panela B, Z	FB3-FB4	1			3.9	14.584	3.721	0.000	0.0	0.0	0.0
	Trim Bar bo	Soukk Panels B, Z	FB3-FB4	1		21.5	21.5	14.584	3.596	0.000	314.0	77.4	0.0
	Weld at M Bars with Trim Bars	Sown Panold B, Z	FB3-FBA	1			2.6	14.584	3.596	0.000	0.0	0.0	0.0
	Trim Bers b21, 622	Sowk Panela B, Z	FB3-78	1		21.0	21.0	14.584	3.596	0.000	305.8	75.4	0.0
	Cut in Plate pk	Souwk Parels B, Z	FB3-FB4	1		-1.7	-1.7	14.584	3.732	0.000	-24.4	-6.2	0.0
	M Bas	Sowk Panols A, Y	FB3-FB4	1		503.4	503.4	11.196	3.516	0.000	5.636 .1	1,770.0	0.0
	C Bars	Sduk Panels A, Y	FB3-FB4	1		35.3	35.3	11.196	3.626	0.000	395.5	128.1	0.0
	Boltdown Ptates, bdpe2, boip17	Sowk Panols A, Y	FP3-F84	1		41.4	41.4	11.196	3.368	0.000	463.8	139.5	0.0
	Bolts in bdpe2, bdp17	Sodvk Parnels A, Y	F83-F84	1			4.9	11.196	3.368	0.000	0.0	0.0	0.0
	Bolidown Plata bdip	Soduk Panols A, Y	FB3-FB4	1		86.2	86.2	11196	3.368	0.000	965.3	290.4	0.0
	Boots in bdpl	Soune Panels A, Y	FB3-FE4	1			6.5	11.196	3.368	0.000	0.0	0.0	0.0
	Boltiown Plata bdip 7	Sowk Panels A, Y	FB3-FB4	1		503	503	11,196	3.364	0.000	563.1	169.2	0.0

Page 8 of 10

DETAILED ANALYSIS OF BALANCE PROGRESS
FULTON AVE. BASCULE BRIDGE
Leaf: Mount Vernon (West)
$\begin{array}{ll}\text { Date: } & \text { 06/01/20 } \\ \text { Time: } & 3: 37 \mathrm{PM} \\ \text { Group } & \text { Subgroup }\end{array}$

Subgroup	Element Description Design Drawings	Mark Shop drawings	Location	$\begin{aligned} & \text { Installed } \\ & \text { i=Yes } 0=\text { No } \end{aligned}$	$\begin{aligned} & \text { Dato } \\ & \text { Instalted } \end{aligned}$	Weight (Ib)	Wolght	$X(t)$ Horiz. Arm	Y (fi) Vert. Arm	$\begin{gathered} 2(t) \\ \text { Trans. Arm } \end{gathered}$	Wx (folb	Wy ($\mathrm{f}-\mathrm{ld}$)	Wz ($\mathrm{f}-\mathrm{lb}$)
	Botis in bap 7	Sowk Panets A, Y	FB3-FE4	1			6.5	11.196	3.364	0.000	0.0	0.0	0.0
	Plate pa	Sowk Panels A, Y	FB3-FB4	1		408.4	408.4	11.198	3.652	0.000	4,572.4	1.491 .5	0.0
	Weld M Bars io Ptate ps	Scuwk Panels A, Y	FB3:FB4	1			2.6	11.196	3.641	0.000	0.0	0.0	0.0
	Trim Bar b1	Stuik Panels'A, Y	FB3FP4	1		36.0	36.0	9.834	3.483	0.000	353.6	125.2	0.0
	Trim Bars b21, b22	Sotuk Panals A, Y	FB3-FB4	1		13.8	13.8	11.108	3.518	0.000	154.6	48.5	0.0
	Woid at M Bars with Trim Alars	Scunk Panels A, Y	FE3-FB4	1			1.8	11.196	3.516	0.000	0.0	0.0	0.0
	Trim Bars b4	Schik Panols A, Y	FB3-FB4	1		14.4	14.4	11.106	3.516	0.000	160.9	505	0.0
	Cut in Plista pe	Stuk Panels A, Y	FB3-FB4	1		-1.7	-1.7	11.196	3.652	0.000	-18.7	-6.1	0.0
	10° Rosedway Grdd Stub	At FB3	FB3FB4	1		-900.4	-900.4	26.916	2.956	0.000	-24,235.2	-2,661.6	0.0
	170° Stringer Subs	At FB3	FE3-FP4	1		-262.5	-262.5	26.916	1.935	0.000	-7,065.5	-507.9	0.0
	Cope in Top Flanga	At FB3	FB3-FB4	1		-72.3	72.3	26.916	2.574	0.000	-1,946.3	-186.1	00
	Cope in' Web	At FB3	FB3FB4	1		-29.8		26.916	2.411	0.000	-601.4	.71.8	0.0
Subtotal	Bay 1 Steel (FB3 to FB4)					$38,571.0$	38,236.7	18.661	2.754	0.000	682,456.0	100,717.9	0.6
1.1	Floor Beam FB-4W												
	Floorbeam 30WF300		FB4	1		18,387.5	18,387 5	10.500	0.739	0.000	193.068.8	13,588.4	0.0
	Cut in Flange at Girder Connection		FB4	1		-317.4	-317.4	10500	0.739	0.000	-3,332.4	-234.5	0.0
	Top Cover Plate		FB4	1		5,145.0	5,145.0	10.500	2.342	0.000	54,022.5	12,049.6	0.0
	Bottoon Cover Plata		FBA	1		4,503.9	4,501.9	10500	-0.719	0.000	47,269.7	-3,2368	0.0
	Haunch at FB4		FE4	1			10,897.4	8.333	2.499	0.000	0.0	0.0	0.0
	Concreto Deck FB4 to FBS		FB4				27,840.0	6.833	2.424	0.000	0.0	0.0	0.0
	Haunch al FBS		F84	1			4,640.0	4.393	1.850	0.000	0.0	0.0	0.0
Subtotal	Floor Beam FB-4W					27,717.0	71,094.4	10.500	0.800	0.000	291,028.6	22,166.6	0.0
SUBTOTAL	BASCULE STEEL					131,795.4	187,030.6	28.832	2.475	0.000	3,799,896.9	326,155.3	0.0

DEJALLED ANALYSIS OF BALANCE PROGRESS

FULTON AVE BASCULE BRIDGE
Leaf: Pelham Manor (East)
$\begin{array}{ll}\text { Date: } & \text { 06/01/20 } \\ \text { Time: } & 3: 45 \mathrm{PM}\end{array}$

							HDR						
Group	Subgroup	Element Description Design Drawings	Mark Shop drawings	Location	$\begin{gathered} \text { Installed } \\ 1=\text { Yes } 0=\text { No } \end{gathered}$	Date Installed	Weight (lb)	$x(f)$ Horiz. Arm	$\begin{gathered} Y(f t) \\ \text { Vert. Arm } \end{gathered}$	$\begin{gathered} z(t) \\ \text { Trans. Arm } \end{gathered}$	Wx ($\mathrm{f}-\mathrm{lb}$)	Wy (t - l)	Wz (ft-lb)

1 REMOVALS Design Drawings Shop drawing $1=$ Yes $0=\mathrm{No}$ Installed Horiz. Arm

Vert Trans. Arm
1.1 BASCULE STEEL

Skdewalk Suppori Plate	Girders	FB1-FB2	1	171.8	52.584	3.994	0.000	9,035.9	686.3	0.0
Bavelled Fai Plate	Ginders	FB1-FB2	1	204.1	52.584	4.039	0.000	10,730.1	824.2	0.0
5180 Wald	Ginders	FE1-FB2	1		52.584	3.984	0.000	0.0	0.0	0.0
Sidowakk Sulingers 12WF31	Stringers	FB1-FB2	1	1.038 .5	52.584	3.413	0.000	34,608.5	3,544.4	0.0
7196° Shum	Stingers	FB1-FB2	1	29.0	52.584	2.895	0.000	1,526.5	84.0	0.0
Bottr in Bottom Flange	Stingers	FB1-FB2	1		52.584	2.895	0.000	0.0	0.0	0.0
Roadway Stringera ta 135	Stringers	FB1-FB2	1	4,690.0	52.584	2.272	-0.500	246,619.0	10,655.7	-2,345.0
Cope In Top Frange	Stiringers	FB1-FB2	1	-57.8	52.584	3.005	-0.500	-3,041.8	-173.8	28.9
Cope in Web	Stringers	FB1-FB2	1	-23.8	52.584	2.841	-0.500	-1,252.5	-67.7	11.9
3×3 Connection Angles	Stringers	FB1-FB2	1	300.8	52.584	2.189	-0.500	15,817.3	658.5	-150.4
78\%\% Bolis	Stringers	FB1-FB2	1		52.584	2.189	-0.500	0.0	0.0	0.0
Roodway Stingen 18 1835	Sirlingera (Ras)	FB1-F82	1	2.931 .3	52.584	2.272	0.800	154,136.9	6,659.8	2,345.0
Copa in Top Flange	Stringers (R\&S)	FB1-FB2	1	-36.2	52.584	3.005	0.800	-1,901.2	-108.6	. 28.9
Cope in Web	Sutingers (R\&.S)	FB1-FB2	1	-14.9	52.584	2.841	0.800	-782.8	-42.3	-11.9
3×3 Connection Andes	Stingers (R'\& S	FB1-FB2	1	188.0	52.584	2.189	0.800	9,885.8	411.5	150.4
78° Bots	Stitingers (R\&S)	FB1-FB2	1		52.584	2.189	0.800	0.0	0.0	0.0
Roodway Stringera 53, S8, St3	Stringers To Remaln	FB1-FB2	1		52.584	2.272	0.000	0.0	0.0	0.0
Cope In Top flange	Stringers To Remalr	FB1-FB2	1		52.584	3.005	0.000	0.0	0.0	0.0
Copa in Web	Stringers To Remain	FB1-FB2	1		52.584	2.841	0.000	0.0	0.0	0.0
13×3 Connection Angles	Stringens To Remain	FB1-FE2	1		52.584	2.189	0.000	0.0	0.0	0.0
788\% Bolts	Stingers To Ramain	FE1-FB2	1		52.584	2.189	0.000	0.0	0.0	0.0
Channel 10 C 25	Sidowalk Channels	FB1-FB2	1	841.7	52.584	3.439	0.000	44,257.3	2,894.4	0.0
778° Bolts	Sidewalk Channels	FB1-FB2	1		52.584	3.022	0.000	0.0	0.0	0.0
Bracing Type 1(Under Sidewelk)	Letoral Bracing	FB1-FB2	0	430.2	52.584	1.422	0.000	0.0	0.0	0.0
Bracing Type 2 (Stringer S3-5,511-13)	Lateral Bracing	FB1-FB2	0	360.8	52.584	1.422	0.000	0.0	0.0	0.0
Braching Type 3 (Sthingor S5-8,S8-11)	Lateral Bracing	FE1-FB2	0	484.3	52.584	1.422	0.000	0.0	0.0	0.0
Guscet Plate at Main Giders	Type 1 Bracing	FB1-FB2	0	76.6	52.584	1507	0.000	0.0	0.0	0.0
$4 \times 4 \times 1 / 2$ Angle	Type 1 Brachng	FR1-FB2	0	38.4	52.584	1.422	0.000	0.0	0.0	0.0
Borts in Angla	Typa 1 Bracing	FB1-FB2	0.		52.584	1.422	0.000	0.0	0.0	0.0
Prate $9 \times 4 \times 1 / 2$	Type 11 Brecing	F31-FB2	0	20.4	52.584	1.422	0.000	0.0	0.0	0.0
Bolts in Plato	Typo. 1 Bracho	FF1.FB2	0		52.584	1.422	0.000	0.0	0.0	0.0
Bols in Braching Type 1	Type 1 Brachng	FB1-FB2	0		52.584	1.507	0.000	0.0	0.0	0.0
Gusset Platb-interior (@S3, 58, S13)	Type 18 2.Bracing	FB1-FB2	0	229.7	52.584	1,507	0.000	0.0	0.0	0.0
Botts in Gussek Plato	Type 182 日racing	FB1-FB2	0		52.584	1.507	0.000	0.0	0.0	0.0
Gussel Plate at FB1, FB2 (0S5,S11)	Type 3 Bracing	FB1F82	0	1531	52.584	1.507	0.000	0.0	0.0	0.0
4×4 Support Angles	Type 3 Bracing	FB1-FB2	0	76.8	52.584	1.422	0.000	0.0	0.0	0.0
Eotis in Gusset Plato	Type 3 Bracing	FB1-FB2	0		52.584	1.507	0.000	0.0	0.0	0.0

Main Sars	Roadway Grid	FB1-FB2	1	7,934.3	52.584	3.204	0000	417,216.4	25,421.4	0.0
Cross Bars	Roadway Grid	FB1-FB2	1	5,5569	52.58 .4	3.356	0.000	292,206.6	18,649.1	0.0
Supplemental Bars	Roadway Grid	FB1-FB2	1	1,168.7	52.58 .4	3.397	0.000	61.452 .3	3,969.9	0.0
Diagonal Bars	Roadway Grid	FB1-FB2	1	3.203 .9	52.584	3.397	0.000	168,471.5	10,883.5	0.0
Edga Bars at Curbs	Roadway Grid	FB1-FB2	1	61.3	52.584	3.356	0.000	3,224.3	205.8	0.0
Openting in Masin Bars al Cross Bars	Roadway Grld	FB1-FB2	1	-305.1	52.584	3.356	0.000	-16,042.7	-1,023.9	0.0
Opening in Cross Bars at Main Barz	Randway Grid	FB1-FB2	1	-1525	52.584	3.397	0.000	-8,021.4	-518.2	0.0
Opening in Cross Bars at Supp Bars	Roadway Grid	FB1-FB2	1	.73.5	52.584	3.397	0.000	-3,867.4	-249.8	0.0
Wolding	Roadway Grid	FB1-FB2	1		52.584	3.356	0.000	0.0	0.0	0.0
M Bars	Stwk Panels M, AJ	FB1-FB2	1	755.1	59.154	4.42	0.000	44,667.B	3,127.7	0.0
C Bars	Stwk Panels M, AJ	FB1-FB2	1	53.6	59.154	4.252	0.000	3,171.4	228.0	0.0
Botulown Piato, bip34	Scwn Panets M, AI	FB1-FB2	1	60.2	59.154	3994	0.000	3,560.2	240.4	0.0
Botts in bdp34	Sduk Panela M, AJ	FB1-FB2	1		59.154	3.990	0.000	0.0	0.0	0.0
Boltalown Plata bdp2	Stuk Panals M, AL	FBifat	1	129.2	59.154	3.994	0.000	7,640.8	515.9	0.0
Botis in bipe	Stwk Panels M, A'M	FB1+ FB 2	1		59.154	3.994	0.000	0.0	0.0	0.0
Botidown Plate bdipe	Stwk Panels M, AJ	FB1-f B^{2}	1	75.3	59.154	3.990	0000	4,457.1	300.6	0.0
Bolts In bdp?	Sowk Panots M, AJ	FB1-FB2	1		59.154	3.990	0.000	0.0	0.0	0.0
Plate p1	Scwik Panels M, AJ	FB1FPB2	1	607.1	59.154	4.278	0.000	35,910.5	2.597 .0	0.0
Weld M Blars lo Plate p1	Stwk Panols M, AJ	FB1-FB2	1		59.154	4.267	0.000	0.0	0.0	0.0
Trim Barbi	Sowk Panols M, AL	FB1-FB2	1	36.0	61.250	4.145	0.000	2,202.4	149.0	0.0
Trim Bar b8	Stwk Panels M, AJ	FE1-F82	1	21.5	59.154	4.142	0.000	1,273.5	89.2	0.0
Trim'Bar bz3	Sowk Panels M, AN	FB1-FB2	1	20.1	59.154	4.142	0.000	1,186.7	83.1	0.0
Weld et M Bars with Trim Bars	Sowik Panats M, AL	FP1-FB2	1		59.154	4.142	0.000	00	0.0	0.0
Cut in Plate p1	Sturk Panels M, AJ	FP1-FB2	1	-1.7	61.000	4.278	0.000	-101.9	-7.1	0.0
M Bars	Stwk Panels N, AK	FB1-FB2	1	755.1	55.104	4.132	0.000	41,609.6	3,120.1	0.0
CBaris	Stwk Panels N, AK	FB1-FB2	1	53.6	55.104	4.242	0.000	2.954 .2	227.4	0.0
Boltiown Plates, bdp36, bdp37	Scwi Panels N, AK	$F \mathrm{FB}_{1-\mathrm{FB}}$	1	38.3	55.104	3.994	0.000	1,998.1	144.8	0.0
'Bottis in bdp36, bdp 37	Sidwk Panels N, AK	FE1-FB2	1		55.104	3.994	0.000	0.0	0.0	0.0
Botidown Plate bdpo4	Stwk Panels N, AK	FB1-FB2	1	75.9	55.104	3.994	0.000	4,184.0	303.3	0.0
Botts in bdp 2	Sowk Panels N, AK	FB1-FB2	1		55.104	3.984	0.000	0.0	0.0	0.0
Botidown Ptata bdpe	Stwk Paneis N, AK	FB1-FB2	1	75.3	55.104	3.980	0.000	4,152.0	299.9	0.0
Bots in bopd	Stuwk Panela N, AK	FB1-FB2	1		55.104	3.880	0.000	0.0	0.0	0.0
Plate pk	Stwk Panels N, AK	FB1FEB2	1	607.1	55.104	4.268	0.000	33.451 .9	2,591.0	0.0
Weld M Bars to Plate pk	Sdwk Panels N, AK	F-1F- ${ }^{\text {P2 }}$	1		55.104	4.257	0.000	0.0	0.0	0.0
Trom Bar bs	Stwa Panati N, AK	FB1FP82	1	21.5	55.104	4.132	0.000	1,186.3	89.0	0.0
Weld adM Bars with Trim Bers	Sdwk Panels N, AK	FB1FB2	1		55.104	4.132	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Sdwk Pands N, AK	FB1FB2	1	21.0	55.104	4.132	0.000	1.155 .3	86.6	0.0
Cut 'n Plate pk	Sdwh Panole N, AK	FB1FB2	1	-17	55.104	4.268	0.000	-92.1	-7.1	0.0
Cuth M Bans	Stwo Panels N, AK	FB1FE2	1	-150.1	55.104	4.132	0.000	-8,272.4	-620.3	0.0
Cuthe CBars	Sdwk Panols N, AK	FB1FB2	1	-9.8	55.104	4.242	0.000	-541.8	-41.7	0.0
Cut in Plater pn	Sdwh Panels N, AK	FB1-FB2	1	-113.2	55.104	4.268	0.000	-6,238.1	-483.2	0.0
M Bars	Sduk Panols P, AL	FB1-FB2	1	755.1	51.052	4.114	0.000	38,549.9	3,106.5	0.0
CBars	Sdwk Panels P, AL	FB1-FB2	1	53.6	51.052	4.224	0.000	2,737.0	226.5	0.0
Bothiown Plates, bdp38, bip39	Sduk Panels P, AL	FP1-FB2	1	417	51.052	4.216	0.000	2.127 .9	175.7	0.0
Botts in bdp38, bdp 39	Sowk Punels P, AL.	FB1-FB2	1		51.052	4.216	0.000	0.0	0.0	0.0
Botriown Ptata bdp95	S duk Panols P, AL	FB1-FB2	1	85.7	51.052	4.216	0.000	4,428.3	365.7	0.0
Bolts in bopes	Sdwk Panela P, AL	FB1-FB2	1		51.052	4.216	0000	0.0	0.0	0.0

Bolidown Plata bdp9	Sdwa Panels P. AL	FB1-FB2	1	75.3	51.052	3.962	0.000	3,846.7	298.5	0.0
Bolis in bdpo	Sctuk Panels P, AL	FB1-FB2	1		51.052	3.962	0000	0.0	0.0	0.0
Plate pk	Stwk Panels P, AL	FB1-FB2	1	607.1	51.052	4.250	0.000	30,992.0	2,580.0	0.0
Weld M Bars to Plate pk	Stwk Panels P, AL	FB1-FB2	1		51.052	4.239	0.000	0.0	0.0	0.0
Trim Bar bs	Sdwk Panels P, AL	FB1-FB2	1	21.5	51.052	4.114	0.000	1,099.0	88.6	0.0
Weld at M Bars with Trim. Bars	Stwk Panels P, AL	FB1-FB2	1		51.052	4.114	0000	0.0	0.0	0.0
Trim Bars b21, b22	Sdwk Panols P, AL	FB1-FB2	1	21.0	51.052	4.114	0.000	1.070.3	86.3	0.0
Cutt in Plate pk	Sdwk Panels P, AL	FB1-FB2	1	-1.7	51.052	4.250	0.000	-85.3	-7.1	0.0
Cut'in M Bars	Sowk Panels P, AL	FB1-FB2	1	-166.8	51.052	4.114	0.000	-5,960.9	-480.4	0.0
Cutin C Ears	Sdwk Parata P, AL	FB1-FB2	1	-8.3	51.052	4.224	0.000	-423.7	-35.1	0.0
Cut in Plate pp	Sdwk Panels P, AL	FB1-FB2	1	-86.9	51.052	4.250	0.000	-4,434.9	-369.2	0.0
M Ears	Sown Panols C4, C10	FB1-FB2	1	755.1	47.000	4.089	0.000	35,490.2	3,087.6	0.0
CBars	Sowk Panels C4, C10	FB1-FB2	1	53.6	47.000	4.199	0.000	2,519.8	225.1	0.0
Boldiown Ptates, bdp32, bdp33	Scwk Panels CA, C10	FB1-FB2	1	62.9	47.000	3.951	0000	2,956.1	248.5	0.0
Bolts in bdp32, bdp33	Sdwk Panela Ca, C10	FB1-FB2	1		47.000	3.951	0.000	0.0	0.0	0.0
Bolidown Plate bdp2	Stuk Panels C4, C10	FB1-FB2	1	129.2	47.000	3.941	0.000	6,070.9	509.1	0.0
Bolts in bdp2	Stuk Parels C4, C10	FB1-FB2	1		47.000	3.941	0.000	0.0	0.0	0.0
Boludown Plata bdpo	Stwik Panels C4, C10	FB1-FB2	1	75.3	47.000	3.937	0.000	3,541.4	296.6	0.0
Bolts in bdpo	Stwk Panels C4, C10	FB1-FB2	1		47.000	3.937	0.000	0.0	0.0	0.0
Plato pk	Stwe Panols C4, CTO	FB1-FE2	1	607.1	47.000	4.225	0.000	28,532.2	2,564.9	0.0
Weld M Bars to Plate pk	Stuk Panels C4, Cio	FB1-FB2	1		47.000	4.214	0.000	0.0	0.0	0.0
TrimiBar bs	Sotwk Panela C4, CiO	FB1-FB2	1	21.5	47.000	4.089	0.000	1,011.8	88.0	0.0
Weld at M Bars with Trim' Bars	Stwik Panels C4, C10	FB1-FB2	1		47.000	4.089	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Stwik Panels C4, CiO	FB1-FB2	1	21.0	47.000	4.089	0.000	985.4	85.7	0.0
Angle 5x4x1/2	Hatch X	FB1-FB2	1	144.2	53.078	3.906	0.000	7,651.7	563.1	0.0
Angle 3x3	Hatch X	FB1-FB2	1	7.8	53.078	3.906	0.000	413.5	30.4	0.0
Beveliod Spacer, BS1	Hatch X	$F 71-\mathrm{FB2}$	1	18.6	53.078	4.052	0.000	987.9	75.4	0.0
Spacer, SP1	Hatch X	FB1-f82	1	13.5	53.078	4.052	0.000	717.9	54.8	0.0
Beam, W1	Hatch X	FB1-FB2	1	125.6	53.078	3.802	0.000	6,667.8	477.6	0.0
Bots	Hatci X	FB1FB2	1		53.078	4.052	0.000	0.0	0.0	0.0
Blco Door	Hatch X	FP1-FB2	1	462.0	53.078	4.177	0.000	24,522.0	1,929.8	0.0
10° Roadway Grid Sub	Al FB1	FB1-FB2	1	-1,125.5	60.688	3.249	0.000	-68,304.3	-3.656.7	0.0
10° Stringer Stubs	AIFB1	FB1-FB2	1	-262.5	60.583	2.228	0.000	-15,903.0	-584.9	0.0
Cope in Top Flange	AlfB1	FB1-FB2	1	-72.3	60.583	3.005	0.000	-4,380.7	-217.3	0.0
Cope in Web	At Fel	FB1-FB2	1	-29.8	80.583	2.841	0.000	-1,803.7	-89.6	0.0
10° Roodway Grd Stub	AL FB2	F81-FB2	1	.900.4	44.583	3.171	0.000	-40,142.5	-2,855.2	0.0
10° Strnger Stubs	At FE2	FB1-FB2	1	-262.5	44.583	2.150	0.000	-11,703.0	. 564.4	0.0
Cope in Top Flange	A F FB2	FB1-FB2	1	-72.3	44.583	3.005	0.000	-3,223.8	-217.3	0.0
Cope in Web	A1FB2	FB1-FB2	1	-29.8	44.583	2.841	0.000	-1,327.4	-84.6	0.0
Hay 4 Steel (FB1 to FB2)				33,824.8	49.757	3.087	0.000	1,683,020.4	104,405.6	0.0
1.2 Bay 5 Steel (FB2 to FB3)										
Sidewelk Support Plisto	Girders	FB2-FB3	1	171.8	35.751	3.847	0.000	6.143 .3	661.1	0.0
Bovelled Fill Plate	Girders	FB2-FB3	1	204.1	35.751	3.893	0.000	7,295.2	794.4	0.0
${ }^{3} 110^{\circ}$ Weld	Girdens	FB2-FB3	1		35.751	3.847	0.000	0.0	0.0	0.0
Sidewatk Stringers	Stringers	FB2-FB3	1	1,038 5	35.751	3.267	0.000	37,127.4	3,392.8	0.0
7/10" Shlms	Stringers	FB2-FB3	1	290	35.751	2.767	0000	1.037 .9	80.3	0.0

Bolts In Bottom Frange	Stringers	FB2-FB3	1		35.751	2.767	0.000	0.0	0.0	0.0
Roadway Sthingers W 18 日 35	Stringers	F82-FB3	1	7,035.0	35.751	2.126	0.800	251,508.3	14,956.4	5,628.0
Cope in Top Flange	Stringers	FE2-FB3	1	-86.8	35.751	2.858	0.600	-3,102.2	-248.0	-69.4
Cope in Web	Stringers	FB2-FB3	1	-35.7	35.571	2.695	0.600	-1,270.9	-96.3	-28.6
3×3 Connection Angles	Stringers	FB2-FB3	1	451.2	35.571	2.043	0.800	16,049.6	921.8	361.0
78° Bolts	Stringers	FB2-FB3	1		35.578	2.043	0.800	0.0	0.0	0.0
Roadwey Siringers. W 18 E 35	Stringers (R\&S)	FE2-FB3	1	586.3	35.751	2.126	0.000	20,959.0	1,246.4	0.0
Cope in Top Flange	Stingers (R\&S)	FE2-FB3	1	-7.2	35.751	2.858	0.000	-258.5	-20.7	0.0
Cope in Web	Suringars (R\&S)	FB2.FB3	1	-3.0	35.571	2.695	0.000	-105.9	. 8.0	0.0
13×3 Connection Angles	Stringers (R8S)	FB2-FB3	1	37.6	35.571	2.043	0.000	1,337.5	76.8	0.0
$77^{\circ} 8^{\circ}$ Eotas	Stringers (R \& S)	FB2-FB3	1		35.571	2.043	0.000	0.0	0.0	0.0
Roosway Stringors S3, S0, S13	Stringers To Remain	F82-FB3	1		35.751	2.126	0.000	0.0	0.0	0.0
Cope in Top Flange.	Stringers To Remain	F82-FB3	1		35751	2858	0.000	0.0	0.0	0.0
Cope in Web	Stungers To Ramain	FB2-FB3	1		35.571	2.695	0.000	0.0	0.0	0.0
$3 \mathrm{X} \cdot 3$ Connection Angles	Stungers To Remain	FB2-FB3	1		35.571	2.043	0.000	0.0	0.0	0.0
77° Bots	Stringers To Remain	FB2-FB3	1		35.571	2.043	0.000	0.0	0.0	0.0
Chamel 10 C 25	Sidewalk Channels	F82-FB3	1	841.7	35.751	3.293	0.000	30,089.8	2,771.6	0.0
718° Botis	Sidowalk Channets	FE2-FB3	1		35.751	2.878	0.000	0.0	0.0	0.0
Bracing Type 1(Under Sidewalk)	Letorad Bracing	FB2-FB3	0	430.2	35.751	4.276	0.000	0.0	0.0	0.0
Bracing Type 2 (Sthnger S3-5,St1-13)	Laleral Bracing	FB2-FB3	0	360.8	35.751	1.276	0.000	0.0	0.0	0.0
Bracing Type 3 (Sithnger S5-8,58-11)	Latoral Bracting	F82-FB3	0	464.3	35.751	1.278	0.000	0.0	0.0	0.0
Gussel Pritua Man Girders	Type 1 Bracing	FB2-FB3	0	76.6	35.751	1.361	0.000	0.0	0.0	0.0
$4 \times 4 \times 1 / 2$ Anglo	Type 1 Bracing	FB2-FB3	0	38.4	35.751	1.278	0.000	0.0	0.0	0.0
Boltor in Angla	Type 1 Braching	FB2-F83	0		35.751	1.276	0.000	0.0	0.0	0.0
Plate $9 \times 4 \times 1 / 2$	Type 1 Bracing	FA2-FB3	0	20.4	35.751	1.276	0.000	0.0	0.0	0.0
Bots in Plate	Type 1 Bracing	FB2-FB3	0		35.751	1.276	0.000	0.0	0.0	0.0
Bots in Bracting Type 1	Type 1 Bracing	FB2FFE3	0		35.751	1.361	0.000	0.0	0.0	0.0
Gusaet Ptats-htarior (OS3, 88, S13)	Type $18: 2$ Bracing	F82FB3	0	229.7	35.751	1.361	0.000	0.0	0.0	0.0
Boits in Gussel Plato	Type 182 Bracing	FB2-FB3	0		35.751	1.361	0.000	0.0	0.0	0.0
	Type 3 Bracing	FB2FB3	0	153.1	35.751	1.381	0.000	0.0	0.0	0.0
4×4 Support Angles	Type 3 Bracing	FE2-FB3	0	76.8	35.75	1.276	0000	0.0	0.0	0.0
Bolts in Gusset Prate	Type 3 Bracing	FB2-FB3	0		35.751	1.381	0.000	0.0	0.0	0.0
Main Bars	Roadway Grid	FB2-FB3	1	7.934.3	35.751	3.058	0.000	283,658.6	24,263.0	0.0
Crose Bars	Rosdway Grid	FB2-FB3	1	5,502.4	35.751	3.210	0.000	196,714.9	17,662.6	0.0
Supplomental Bern	Roadway Sitd	FB2-FB3	1	1,168.7	35.751	3.251	0.000	41,780.4	3,799.3	0.0
Dlagoral Bars	Rosdway Grid	FB2-FB3	1	3.203 .9	35.751	3.251	0.000	114,541.0	10,415.7	0.0
Edge Bars al Curbs	Roadway Grid	FE2-FB3	1	60.7	35.751	3.210	0.000	2,170.7	194.9	0.0
Opening in Main Bars at Cruss Bars	Roadvey Grid	FB2-FB3	1	. 305.1	35.751	3.210	0.000	-10,907.2	-979.3	0.0
Opaning in Cross Bars et Main Bars	Roadway Grid	FB2-FB3	1	-152.5	35.751	3.251	0.000	-5,453.6	-495.9	0.0
Opening in Croas Bars at Supp Bars	Rosedway Grid	FB2FB3	1	-73.5	35.751	3.254	0.000	-2,629,4	-239.1	0.0
Welding	Rosedway Gidd	FB2-FB3	1		35.751	3.210	0.000	0.0	0.0	0.0
M Bars	Scuk Panela H, AE	FB2-FB3	1	755.1	42.948	4.055	0.000	32,430.5	3,062.0	0.0
CBas:	Sowk Panols H, AE	FB2-FB3	1	53.6	42.948	4.165	0.000	2,302.5	223.3	0.0
Boltrown Plates, bdp32, bdp33	Sowk Panels H, AE	FB2-FE3	1	62.9	42.948	3.917	0.000	2,701.3	245.4	0.0
Bolis in bdp32, bodp33	Sowk Panels H, AE	FB2-F83	1		42.948	3.917	0.000	0.0	0.0	0.0
Botkiown Plate bdp2	Sturk Panala H, AE	FE2-FE3	1	129.2	42.948	3.907	0.000	5,547.5	504.7	0.0
Bota in bdp2	Stak Panels H, AE	FE2-FE3	1		42.948	3.907	0.000	0.0	0.0	0.0

Boltdown Plate bdp9	Sctuk Panels H, AE	FB2-FB3	1	75.3	42.948	3.903	0.000	3,236.0	294.1	0.0
Bolts in bdpe	Sdwk Panels H, AE	FB2-FB3	1		42.948	3.903	0.000	0.0	0.0	0.0
Plate pk	Scavk Panels'H, AE	FB2-FB3	1	607.1	42.948	4.191	0.000	26,072.4	2,544.2	0.0
Weld M Bars to Plate pk	Sctuk Panels H, AE	FB2-FB3	1		42.948	4.180	0.000	0.0	0.0	0.0
Trim Bar b8	Sowk Panela H, AE	FB2-FB3	1	21.5	42.948	4.055	0.000	924.6	87.3	0.0
Weld at M Bars with Trim Bars	Sownk Panels H, AE	FB2-FB3	1		42.948	4.055	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Sownk Panels H, AE	FB2-FB3	1	21.0	42.948	4.055	0.000	900.4	85.0	0.0
Cut in Plate pk	Stwk Panels H, AE	FB2-FB3	1	-1.7	42.948	4.193	0.000	-71.8	-7.0	0.0
M Bars	Scwik Panels G, AD	FB2-FB3	1	755.1	38.896	4.014	0.000	29,370.8	3,031.0	0.0
C Bars	Sodwk Panels G, AD	FB2-FB3	1	53.6	38.896	4.124	0.000	2,085.3	221.1	0.0
Bolldown Plutes, bdp32, bdp33	Sdwk Pansla G, AD	FB2-FB3	1	62.9	38.896	3.876	0.000	2,446.4	243.8	0.0
Bots in bdp32; bdp 33	Stukt Panets G, AD	FB2-FB3	1		38.898	3.876	0.000	0.0	0.0	0.0
Boltdown Plate bdp2	Sdwk Parels G, AD	FE2-FB3	1	129.2	39.896	3.866	0.000	5,024.1	499.4	0.0
Boths in bdpe	Sdwk Parels G, AD	FB2-FB3	1		38.896	3.868	0.000	0.0	0.0	0.0
Bolldown Plata bdpa	Stuk Panels G, AD	FB2-FB3	1	75,3	38.896	3.662	0.000	2,930.7	291.0	0.0
Bolts in bdip9	Stwk Panels G, AD	FB2-FB3	1		38.896	3.862	0.000	0.0	0.0	0.0
Plate pk	Stwik Panels G, AD	FE2F83	1	607.1	38.896	4.550	0.000	23,612.5	2.519 .3	0.0
Weld M Bers to Plate pk	Sowk Panels G, AD	FB2-FB3	1		38.896	4.139	0.000	0.0	0.0	0.0
Trim Ber be	Scukk Panela G, AD	FB2-FB3	1	21.5	38.896	4.014	0.000	837.4	86.4	0.0
Wotd at M Bare wth Trim Bers	Sdwk Panals G, AD	FE2-FB3	1		38.896	4.014	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Sdwk Panels G, AD	FB2-FB3	1	21.0	38.896	4.014	0.000	815.5	84.2	0.0
Cutitiplato pk	Souk Panets G;AD	FB2F83	1	-1.7	38.896	4.150	0.000	-65.0	-6.9	0.0
M Bars	Stwik Panols F, AC	FB2-FB3	1	755.1	34.844	3.964	0.000	26,311.1	2.993 .3	0.0
CBars	Stwk Panela F, AC	FB2-FB3	1	53.6	34.844	4.074	0.000	1,868.1	218.4	0.0
Boltoown Pleles, bdp32, bdp33	Sowk Panels F, AC	FE2-FB3	1	62.9	34.844	3.826	0.000	2,191.5	240.6	0.0
Both in bdp32, bdp33	Stwik Panels F, AC	F82-FB3	1		34.844	3.826	0.000	0.0	0.0	0.0
Boltdown Plata bdj2	Stwk Panels F, AC	FB2-FB3	1	129.2	34.844	3.816	0.000	4,500.7	492.9	0.0
Bolts in bdp2	Sdwk Panols F, AC	FB2-FB3	1		34.844	3.816	0.000	0.0	0.0	0.0
Bothdown Plate bdpe	Stwk Panels F, AC	FB2-F83	1	75.3	34.844	3.812	0.000	2,625.4	287.2	0.0
Boits in bopel	Sowk Panels F, AC	F82-F83	1		34.844	3.812	0.000	0.0	0.0	0.0
Ptate pk	Stwk Panels F, AC	F82-FB3	1	607.1	34.644	4.100	0.000	21,152.7	2,489.0	0.0
Weld M Bars to Plato pk	Sowk Panels F, AC	FB2-FB3	1		34.844	4.089	0.000	0.0	0.0	0.0
Trim Bar b8	Sduk Panets F, AC	FB2-FB3	1	21.5	34.844	3.964	0.000	750.1	85.3	0.0
Weld at M Ears whth Trim Bars	Sdwk Panels F, AC	F82-FB3	1		34.844	3.964	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Sowk Panels F, AC	FB2-FB3	1	21.0	34.844	3.964	0.000	730.5	83.1	0.0
Cut In Plate pk	Sdwk Panela F, AC	FB2-FE3	1	-1.7	34.844	4.100	0.000	-58.2	-6.9	0.0
M Bars	Scukk Panols C2, Ca	FB2-FB3	1	755.1	30.792	3.907	0.000	23,251.3	2.950 .2	0.0
CBars	Stuk Pands C2, C8	FB2-FB3	1	53.6	30.792	4.017	0.000	1,650.8	215.4	0.0
Boltoown Plates, bdp32, bdp33	Sturk Paneta C2, CB	FB2-FB3	1	62.9	30.792	3.769	0.000	1,936.7	237.1	0.0
Botts in bdp32, bdp33	Stuk Panols C2, C8	FB2-FB3	1		30.792	3.769	0.000	0.0	0.0	0.0
Boltdown Plata bdp2	Scurk Panela C2, C8	FB2-FB3	1	129.2	30.792	3.759	0.000	3,977.3	485.5	0.0
Botis in bdp 2	Scuwk Pancle C2, C8	FB2-FB3	1		30.792	3.759	0.000	0.0	0.0	0.0
Bathdown Plata bdipe	Stuwk Panols C2, C8	FB2-FB3	1	75.3	30792	3.755	0.000	2,320.1	282.9	0.0
Botts in bdpo	Sowk Panels C2, C8	F82-FB3	1		30792	3.755	0.000	0.0	0.0	0.0
Plate pk	Scauk Panels C2, CB	FB2-FB3	1	607.1	30.792	4.043	0.000	18,692.8	2,454.4	0.0
Wold M Bars to Plate pk	Sowk Parels C2, C8	FB2-FB3	1		30.792	4.032	0.000	0.0	0.0	0.0
Tim Bar b8	Stwk Panola C2, C8	FB2-FB3	1	21.5	30792	3.907	0000	662.9	84.1	0.0

	Weld at M Bars with Trim Bars	Sdwk Panets C2, C8	FB2-FB3	1		30.792	3.907	0.000	0.0	0.0	0.0
	Trim Bars b21, b22	Sowk Panela C2, C8	FP2-FB3	1	21.0	30.792	3.907	0.000	645.6	81.9	0.0
	10^{*} Roodway Grid Stub	At FB2	F82-FB3	1	. 900.4	43.749	3.171	0.000	-39,391.6	-2,855.2	0.0
	10° Stringar Stubs	AI FB2	FB2-FB3	1	-262.5	43.749	2.150	0.000	-11,484.1	-564,4	0.0
	Cope in Top Flange	AI FB2	FE2-F83	1	-72.3	43.749	2.858	0.000	-3,163.4	-206.7	0.0
	Cope ti Web	A1 FB2	FB2-FB3	1	-298	43.749	2.695	0.000	-1,302.5	-80.2	0.0
	10° Roadway Grid Suib	Al Fe3	FB2-FB3	1	-900.4	27.750	2.956	0.000	-24,986.1	-2,661.6	0.0
	10° Stringer Stubs	At FB3	FB2-FB3	1	-262.5	27.750	2.956	0.000	-7,284.4	-776.0	0.0
	Cope in Top Flange	At FB3	FB2-FB3	1	-72.3	27.750	2.858	0.000	-2,005.6	-206.7	0.0
	Cope in Wob	AIFB3	FB2-FB3	1	-29.7	27.750	2.695	0.000	-825.1	-80.1	0.0
Subtotal	Bay 5 Steel (FB2 to FB3)				33,819,3	34.021	2.939	0.174	1,150,552.6	99,402.6	5,891.0
	1.1.3 Maln Girder Top Flange Plates										
	Steel Pistes			1		-11.420	6.830	0.000	0.0	0.0	0.0
Subtotal	Main Girder Top Flange Plates				0.0	0.000	0.000	0.000	0.0	0.0	0.0
	1.1.4 Bay 6 Steel (FB3 to FB4)										
	Sidewalk Support Plate	Grders	FB3-FB4	1	171.8	18.917	3.501	0.000	3,250.6	601.6	0.0
	Bevelled Fill Plate	Girders	FB3-FBA	1	204.4	18.917	3.546	0.000	3,860.1	723.6	0.0
	84169 Weid	Ghiders	FB3-FB4	1		18.917	3.501	0.000	0.0	0.0	0.0
	Onc- Sufferers at FB4	Ginders	F84	1	244.0	10.500	3.040	0.000	2,562.5	741.9	0.0
	Sibewatk Etingars	stithers	FB3-FBC	1	1.038 .5	18.917	2.983	0.000	19,645.3	3,097.8	0.0
	$7 \mathrm{HC4}$ Shwm	Stringers	F83-FB4	1	29.0	18.917	2.483	0.000	549.2	72.1	0.0
	Bolts in Bottom Fianga	Suthgers	FB3-FB4	1		18.917	2.483	0.000	0.0	0.0	0.0
	Roadway Sthioari W 18 B 35	Stringers	FB3-FB4	1	2,931.3	18.917	1.842	-7.200	55,450.5	5,399.4	-21,105.0
	Cope in Top flange	Stringers	F83-F84	1	-36.2	18.917	2.574	-7.200	. 683.9	-93.1	260.3
	Copa in Wob	Suthgers	FFB3-FB4	1	-14.9	18.917	2.411	-7.200	-281.6	-35.9	107.2
	3×3 Connection Angles	Stuinger	FB3-FB4	1	189.0	18.917	1.759	-7.200	3,556.4	330.7	-1,353.6
	$718{ }^{\circ}$ Bolts	Suringers	FB3-FB4	1		18.917	1.759	-7.200	0.0	0.0	0.0
	Roadway Sthtoera W 18 B 35	Stringers (FL S S)	FB3-FB4	1	4,690.0	18.917	1.842	4.500	88.720 .7	8,639.0	21,105.0
	Cope in Top Frange	Stringers (RAS)	FB3-FB4	1	-57.8	18.917	2.574	4.500	-1,094.3	-148.9	-260.3
	Cope in Web	Stringers (R\&S)	FB3-FB4	1	-23.8	18.917	2.411	4.500	-450.6	-57.4	-107.2
	3×3 Connection Angles	Sutingers (iRES)	FB3-FB4	1	300.8	18.917	1.759	4.500	5,690.2	529.1	1,353.6
	$7 / 8^{\circ}$ Bolts	Stingers (RAS)	FE3-FB4	1		18.917	1.759	4500	0.0	0.0	0.0
	Chanvel 10 C 25	Sidewrlk Channols	FB3-FB4	1	841.7	18.917	3.009	0.000	15,921.5	2,532.5	0.0
	$7 / 80$ Botbs	Sidownak Channets	F33-FB4	1		18.917	2.592	0.000	0.0	0.0	0.0
	Breching Type 1(Under Sidowelk)	Lateral Bracing	FB3-FEA	1	430.2	18.917	0.992	0.000	8,138.1	426.8	0.0
	Bracing Type 2 (Stinger S3-6,S11-13)	Leteral Bracing	FB3-FB4	1	360.8	18.917	0.692	0.000	6,825.4	357.9	0.0
	Brachng Typa 3 (Stinger S5-8,58-11)	Lelaral Brecing	FB3-FB4	1	464.3	18.917	0.992	0.000	8,783.9	460.6	0.0
	Gursel Plate at Man Groders	Type 1: Braching	FB3-FB4	1	76.6	16.917	1.077	0.000	1,449.3	82.5	0.0
	$4 \times 4 \times 1 / 2$ Angla	Typa 18rachng	FB3:FB4	1	38.4	18.917	0.992	0.000	726.4	38.1	0.0
	Bolts in Angle	Type 1 Erache	FE3-FB4	1		18.917	0.992	0.000	0.0	0.0	0.0
	Prale $9 \times 4 \times 1 / 2$	Type 1 Bracing	FB3FB4	1	20.4	18.917	0.992	0.000	386.2	20.3	0.0
	Bolis in Plate	Type 1 Eracing	FB3-FB4	1		18.917	0.992	0.000	0.0	0.0	0.0
	Botis in Bracing Type 1	Type 1 Bracing	FB3-F84	1	45.4	18.917	1.077	0.000	858.1	48.9	0.0
	Gussel Piste-Interior (@S3, 50, S13)	Type 182 Bracing	F83-FB4	1	2297	18.917	1.077	0.000	4,345.0	247.4	0.0
	Bots in Gussat Plate	Type $1 \& 2$ Bracing	FB3-FB4	1		18.917	1.077	0.000	0.0	0.0	0.0

Gusset Plate at FB1, $\mathrm{FB2}$ (0S5,811)	Type 3 Bracing	FB3-FB4	1	153.1	18.917	1.077	0.000	2,896.7	164.9	0.0
4×4 Support Angles	Type 3 Bracing	FB3-F84	1	76.8	18.917	0.992	0.000	1,452.8	76.2	0.0
Bothe in Gussal Plate	Type 3 Bracing	FB3-FB4	1		18.917	1.077	0.000	0.0	0.0	0.0
Main Bars	Roadway Grid	FE3-FB4	1	7,934.3	18.987	2.774	0.000	150,092.9	22,009.7	0.0
Cross Bars	Roartway Grid	Fe3-FB4	1	5,556.9	18.917	2.926	0.000	105,120.8	16,259.6	0.0
Supplemental Bars	Roadway Grid	F83-F84	1	1,168.7	18.917	2.967	0.000	22,107.4	3,467.4	0.0
Diagornal Bars	Roaatway Gid	FB3-FB4	1	3,203.9	18.917	2.967	0.000	60,607.3	9,505.8	0.0
Edge Bartat aurbs	Roadway Grid	FB3-FB4	1	61.3	18.917	2926	0.000	1,160.0	179.4	0.0
Opening in Main Bars al Cross Bars	Roandwoy Grid	FB3-FE4	1	. 305.1	18.917	2926	0.000	-5,771.3	-892.7	0.0
Opening in Cross Bars at Matn Bars	Rosadway Grid	FB3-FB4	1	-152.5	18.917	2.987	0.000	-2,885.7	-452.6	0.0
Opening in Croas Bara at Supp Bars	Roadway Grid	FB3-FB4	1	-73.5	18.917	2.987	0.000	-1,391.3	-218.2	0.0
Welding	Rosedway Grid	FB3-FE4	1		18.917	2.926	0.000	0.0	0.0	0.0
M Base	Stwk Panots E, AB	FB3-FB4	1	755.1	26.740	3.841	0.000	20,191.6	2,900.4	0.0
C Bars	Sdwk Panela E. AB	FB3-FB4	1	53.6	26.740	3.951	0.000	1,433 6	2118	0.0
Botidown Plates, bdp32, bdp33	Sdwk Panes E, AB	FB3-FB4	1	62.9	26.740	3.703	0.000	1,681.8	232.9	0.0
Eolts in bdp32, bip 33	Sdwk Panets E, AB	FB3-FB4	1		26.740	3.703	0.000	0.0	0.0	0.0
Boltiown Plate bdp2	Sciwk Panets E, AB	FB3-FB4	1	129.2	26.740	3693	0.000	3,454.0	477.0	0.0
Bolte in bdp2	Stwk Panels E, AB	FB3-FB4	1		26.740	3.693	0.000	0.0	0.0	0.0
Boltdown Plate bdpe	Stwk Paneis E, AB	FB3-FE4	1	75.3	26.740	3.689	0000	2,014.8	278.0	0.0
Botts in bipg	Stwk Panols E, AB	FB3-Fb4	1		26.740	3.689	0.000	0.0	0.0	0.0
Ptatepk	Stwik Panols E, AB	FB3-FB4	1	607.1	26.740	3.977	0.000	16,233.0	2,414.3	0.0
Wera M Bars to Plato pk	Sawn Pañôls E. AB	FB3-FB4	1		26.740	3.966	0.000	0.0	0.0	0.0
Thm Ear be	Sdwk Panels E, AB	FB3FB4	1	21.5	26.740	3.841	0.000	575.7	82.7	0.0
Weld at M Bers whth Trim Bars	Sdwk Parrels E, AB	FB3F84	1		26.740	3.841	0.000	0.0	0.0	0.0
Trim Bars b21, b22	Sdwk Penctis, AB	FB3-FB4	1	21.0	26.740	3.641	0.000	560.6	80.5	0.0
Cutis Ptate pk	Sdwk Panots E, AB	FBSFB4	1	-1.7	26.740	3.977	0.000	-44.7	-6.6	0.0
M Bars	Stiwk Panols D, AA	FB3FB4	1	755.1	22.688	3.767	0.000	17,131.9	2,844.5	0.0
CBars	Scwk Panok D, AA	FB3FB4	1	53.6	22.688	3.877	0.000	1,216.3	207.9	0.0
Boltoiown Plates, bidp32, bdp33	Scuk Pronels D, AA	FB3-F84	1	82.9	22.688	3.629	0.000	1,427.0	228.2	0.0
Botis in bdas2, bdip3s	Sduk Panola D, AA	FB3-F84	1		22.688	3.629	0.000	0.0	0.0	0.0
Botuown Plate bdp2	Stuw Panels D, AA	FB3-FE4	1	129.2	22.688	3.659	0.000	2,930.6	467.5	0.0
Bota in bdp 2	Scwa Panols D, AA	FB3-FB4	1		22.688	3619	0.000	00	0.0	0.0
Boltdown Plate bdpo	Stwk Panots D, AA	F83-FB4	1	75.3	22.688	3.615	0.000	1,709.5	272.4	0.0
Botts in bipe	Scunk Panels D, AA	FB3-FB4	1		22.688	3.615	0.000	0.0	0.0	0.0
Plate pk	Sduk Parnela D, AA	FB3-FEA	1	607.1	22.888	3.903	0.000	13,773.2	2,369.4	0.0
Weld M Bers to Plato pk	Sdunk Panels D, AA	F83-FB4	1		22.688	3.892	0.000	0.0	0.0	0.0
Trim Barbo	Sturk Panels D, AA	FE3-FB4	1	21.5	22.688	3.767	0.000	488.4	81.1	0.0
Weld al M Bare wht Trimn Bars	Sidn Panels D, AA	FB3-FB4	1		22.688	3.767	0.000	0.0	0.0	0.0
Timm Bers b21, b22	Sowk Panels D, AA	FB3-FB4	1	21.0	22.688	3.767	0.000	475.7	79.0	0.0
Cut in Plate pk	Stwk Peanels D, AA	FB3-FB4	1	-1.7	22.688	3.903	0.000	-37.9	-6.5	0.0
M Bare	Sadk Panols C1, C7	FB3-FB4	1	755.1	18.636	3.686	0.000	14,072.2	2.783 .3	0.0
CBma	Sduk Paneia C1, C7	FB3-FB4	1	53.6	19.638	3.796	0.000	999.1	203.5	0.0
Boltiown Ptates, bdip32, bdp33	Stuk Panels C1, $\mathrm{Cl}^{\text {l }}$	FB3-FBA	1	62.9	18.636	3.548	0.000	1,172.1	223.2	0.0
Bolts in bdp 32 , bdp33	Stuk Panots C1, $\mathrm{C7}$	FB3-FBA	1		18.636	3.548	0.000	0.0	0.0	0.0
Bohldown Plate bdp2	Stwik Panets C1, C7	FB3-FB4	1	129.2	18.636	3.538	0.000	2,407.2	457.0	0.0
Bolts lin bdp2	Stuk Panels C1, C7	FB3-FB4	1		18.636	3.538	0.000	0.0	0.0	0.0
Boltown Plate bdpa	Sctwk Panels C1, C7	FB3-FB4	1	75.3	18.636	3.534	0.000	1,404.2	266.3	0.0

Bolts in bdpo	
	Ptate pk
Weld M Bars to Plate pk	
	Trim Bar be
Weld at M Bars whti Trim Bars	
Trim Bara b21, b22	
M Bars	
C Bars	
	Bolidown Ptates, bdp32, bdp33
Botis in bdp32, bdp33	
Boitdown Plata bdp2	
Bolts in bdep2	
Boltown Plate bdpe	
Bolts in bdpp	
Plate pk	
Weld M Barra to Plate pk Trim Bar b8 Weht at M Bars with Trim Bars	
Trion Bara b21; ${ }^{\text {22 }}$	
Cut In Plate pk	
M Bars	
C Bars	
	Botidown Plates, bdp92, hdp17
Bols in bdper, bdpi7	
Botidown Plate bdip 1	
Bolia in bidpl	
Bolardown Plate bdp7	
Bolts in bdp7	
Plate pa	
Weld M Bars to Plate pa	
Trim Ber b1	
Trim Bars b21, b22	
Weld al M Bars with Trim Bars	
Trim Bers b4	
Cut fin Plate pa	
400 Ropdwey Grid Suib	
10° 3tringer Stids	
Cope in Top Flange	
Cope in Web	
	Bay 6 Steel (FB3 to FBA)

Stuk Panols C1, C7
Stwk Panols C1, C7
Stw Pands
$1, \mathrm{C7}$

FB3-FB4 Sduk Panels C1, C7
Stuk Panels C1,C7 Stwk Panels C1, C7 Sdwk Panets C1, C7
Sduth Panets B Z Sdwk Sduth
Sdunt

FB4 3 -FB4 FB3-FB4 Stwk Panets B, Z Sowk Panels B, Z Sdwk Panels B,Z Sdukk Panels B,Z
Sduk Panata B, Z Scwk Pansts B, 2 Sowk Panels B, Z
Sowk Panels B, Z B3-FB4
B3-FB4 33-FB4 B3-FB4 F83-FB4

F83-FB4 Sowk Panels B,Z B3-FB4 Sawk | Stwk Pansts B, Z |
| :--- |
| Sctwk Pants B | Scwk Pannts B, Z

Sdwk Panels B, Z Sdwk Panels B, Z
Sdwk Pands B, Z
Stwh

3-FE4 B3-FB4 Sduk Pande B, Z

Scukt Pands A, Y Sdwk Pinels A, Y Sowk Pandels A, Y | $33-F B 4$ |
| :--- |
| $33-F B 4$ | Stwat Panels A, Y Sownk Panols A FB3FB B3FBA B3-FB Stwwk Panols A, Y

Sowk Pands A, Y Soluk Panets A. Y $\mathrm{FB} 3-\mathrm{FB}$
$\mathrm{FB} 3-\mathrm{FB}$ Scuts Panols A, Stwk Panela A. Y Sdwk Panels A, Stwk Panols A Souk Panolis A, Y Stwik Pareta A, Y Sctwk Panols A, Y Sownk P Al FB AI FR3 At FB3 At Fe3
At
Fe3 Bay 6 Steel (fB3 to FBa)
1.1.5 Fioor Beam FB-4E
1.1.5 Floor Baam FB-4E
Floorbeanin Sow F300
Cut in Flange al Grder Connection
Top Cover Plate

| FB4 | 1 | |
| :--- | :--- | :--- | :--- |
| FB4 | 1 | |
| FB4 | 1 | |
| FB4 | 1 | |

Soltom Cover Plate
Floor Beam FB-4E

10.500
10.500
10500
10.500
10.500

$9,501.9$	10.500
29.717 .0	10.500

3.534	0.000	0.0	0.0	0.0
3.822	0000	41,313.3	2,320.2	0.0
3.811	0.000	00	0.0	0.0
3.686	0.000	401.2	79.4	0.0
3.686	0.000	0.0	0.0	0.0
3.686	0.000	390.7	77.3	0.0
3.596	0.000	11.012.5	2,715.4	0.0
3.706	0.000	781.9	198.7	0.0
3.458	0.000	917.3	217.5	0.0
3.458	0.000	0.0	0.0	0.0
3.448	0.000	1,883.8	445.4	0.0
3.448	0.000	0.0	0.0	0.0
3.444	0.000	1,098.9	259.5	0.0
3.444	0.000	0.0	0.0	0.0
3.732	0.000	8,853.5	2,265.6	0.0
3.721	0.000	0.0	0.0	0.0
3596	0.000	314.0	77.4	0.0
3.596	0000	0.0	0.0	0.0
3598	0.000	305.8	75.4	0.0
3732	0.000	-24.4	-6.2	0.0
3.516	0.000	5,636.1	1,770.0	0.0
3.628	0.000	395.5	12 B 1	0.0
3.368	0.000	463.8	139.5	0.0
3.368	0.000	0.0	0.0	00
3.368	0.000	965.3	290.4	0.0
3.368	0.000	0.0	0.0	0.0
3.364	0.000	563.1	169.2	0.0
3.364	0.000	0.0	0.0	0.0
3.652	0.000	4,572.4	1,491.5	0.0
3.641	0.000	0.0	0.0	0.0
3.483	0.000	353.6	125.2	0.0
3.516	0.000	154.6	48.5	0.0
3.516	0.000	0.0	00	0.0
3.516	0.000	160.9	50.5	0.0
3.652	0000	-18.7	-6.1	0.0
2.956	0.000	-24,235.2	-2,661.6	0.0
1.835	0000	-7,065.5	-507.9	0.0
2.574	0.000	-1,946.3	. 186.1	0.0
2.411	0.000	-800.3	. 71.7	0.0
2.752	0.000	683,315.2	100,766.8	0.0
0.739	0000	193,068.8	13,588.4	0.0
0.739	0.000	-3,332.4	-234.5	0.0
2.342	0000	54,022.5	12,049.6	0.0
-0.719	0.000	47,269.7	-3.236.8	0.0
0.800	0.000	291,028.6	22,166.6	0.0

	SUBTOTAL	BASCULE STEEL			131,977.6	28.853	2.476	0.045	3,807,916.7	326,741.6	5,891.0							
	1.2 SPAN LOCKS 1.2.1 Span Lock Machinery																	
		Operator with Lock Bar	Girder			59.313	2.978	0.000	0.0	0.0	0.0							
		Gulde Support Piste	Girder			61.667	2.978	0.000	0.0	0.0	0.0							
		Bolts in Support Piate	Girder			61.667	2.978	0.000	0.0	0.0	0.0							
		$1 / 2{ }^{2}$ Shims	Grrder			61.667	2.978	0.000	0.0	0.0	0.0							
		1/2 ${ }^{-1}$ Becker Piato	Grrder			61.667	2.978	0.000	0.0	0.0	0.0							
		Vertical Plate	Grder			61.667	2.978	0.000	0.0	0.0	0.0							
		Suffianers	Grder			61.667	2.978	0.000	0.0	0.0	0.0							
		Guide Shoe	Glider			61.667	2.978	0.000	0.0	0.0	0.0							
		Recalver Support Plate	Roadway Center Line			61.667	1.790	-0.750	0.0	0.0	0.0							
		Boths is Support Plite	Roadway Center Line			61.667	1.790	-0.750	0.0	0.0	0.0							
		$1 / 2$ Shims	Roadway Center Line			61.667	1.790	-0.750	0.0	0.0	0.0							
		Vertical Plato	Roadway Conter Line			61.667	1.790	-0.750	0.0	0.0	0.0							
		Stifeners	Roasway Canter Line			61.667	1.790	-0.750	0.0	0.0	0.0							
		Guide Shoo	Roadway Center Line			61.667	1.790	-0.750	0.0	0.0	0.0							
Subtotal		Span Lock Machinery			0.0	0.000	0.000	0.000	0.0	0.0	0.0							
		1,2.2 Platiorm																
		Short Angle	Grider	1	67.6	52.000	0.096	0.000	3,516.2	6.5	0.0							
		Bolts in Angle	Girder	1	6.5	52.000	0.096	0.000	337.0	0.6	0.0							
		Long Angla	Gider	1	189.6	56.210	0.096	0.000	10,660.0	18.2	0.0							
		Bolts in Angle	Grider	1	3.2	56.210	0.096	0.000	182.1	0.3	0.0							
		Angle Posts	Grider	1	177.6	56.210	1.463	0.000	9,983.5	259.8	0.0							
		Bolts in Angle	Girder	1	13.0	56.210	1.463	0.000	728.5	19.0	0.0							
		Angla Handral	Grider	1	189.6	56.210	2.829	0.000	10,660.0	536.5	0.0							
		Weld for Handral	Girder	1	4.8	56.210	2.989	0.000	269.2	14.3	0.0							
		Angle Brackat	Girder	1	68.2	52.000	2.596	0.000	3,441.1	171.8	0.0							
		Botts in Angle	Girder	1	6.5	52.000	2.596	0.000	337.0	16.8	0.0							
		Steel Grating	Girder	1	1,076.2	56.210	0.096	0.000	60,493.9	103.3	0.0							
		Connection Ptates for Anglo Bracketa	Girder	1	46.4	52.000	2.596	0.000	2,412.6	120.4	0.0							
	Subtotal	Platform			1,847.3	55.770	0.686	0.000	103,028.1	1,267.6	0.0							
	SUBTOTAL	SPAN LOCKS			1,847.3	55.770	0.686	0.000	103,021.1	1,267.6	0.0							
SUBTOTAL	1 Removals				133,824.7	29.224	2.451	0.044	3,910,937.9	328,009.2	5,891.0							

Steel Removal - Item 589.01

Approach Spans (Both sides included In calculations as they were the same)

Stringer Removals	Type	W	Width (in)	Thickness (in)	Length (ft)	Unit Wt (pci)	Wt (lbs)
Hoadway Stringers	$14 \mathrm{WF68}$	18.00	-	-	26.00	68.00	$31,824.00$

Diaphragm Removals	Type	\#	Width (ln)	Thickness (in)	Length (f)	Unit Wt (peti)	Wh (lbs)
Rear Diaphragms	$10 \mathrm{C30}$	16.00	--	\cdots	6.50	30.00	3,120.00
intermediate Dlaphragms	$12 \mathrm{Bl6.5}$	16.00	-	-	6.50	16.50	1,716.00
Front Diaphragms	10wf33	16.00	-	-	6.50	33.00	3,432.00

Approach Hatch Framing Removal	Type		Width (in)	Thlckness (in)	Length (f)	Unit Wi (pci)	Wt (lbs)
Outter Longitudinal Frame	10 C 15.3	2.00	-	-	2.67	15.30	81.60
Inner Longitudinal Frame	9 C 15	4.00	-	-	2.67	15.00	160.00
Transvetse Frame	10 C 15.3	4.00	-	-	2.50	15.30	153.00

Total Sum: $\quad 44,910.4$

EXHIBIT F

From: Roseman, Kevinkmr5@westchestergov.com
Sent: Friday, May 25, 2018 8:40 AM
To: Maffei, Raymond Jeff jmaffei@eecruz.com; Nick Rahaniotis nrahaniotis@verdeelectric.com; Dupuy, Karl KDupuy@eecruz.com
Cc: Fatigate, Michael MFatigate@eecruz.com; 'Michael Sweeney'msweenev@verdeelectric.com; 'Khaled Hajjeh' Khaled.Haijeh@hdrinc.com; 'JohnPaul Cunningham' < JohnPaul.cunningham@hdrinc.com>; Statini, James imsc@westchestergov.com
Subject: FAB - Fulton Ave Bridge - 5/25/18 Successful Milestone Testing
After a bumpy start last night we achieved the Milestone of operating the bridge under normal conditions on the main motor from the operators house. We went 10 out of 10 in half the allotted time.

Next week (Tucsday - Thursday Nights), Jim's staff will do training with the goal of the County assuming operations by Friday June 1. We will allow traffic in between openings to create more realistic training.

This does not constitute final acceptance testing or assumption of maintenance. Operators will not have bypass keys and if there are any issues they will call EEC or Verde for help.

Prior to Tuesday night we request operation of the control house internal 3-way light dimmer, connection of the CCTV, marine radio and if Verizon shows telephone. The issue with the hot box leak also needs to be taken care with the water tumed back on.

Thank you and congratulations to cveryone involved.
Kevin
-------- Original Message \qquad
From: "Maffei, Raymond Jeff"
Date: Thu, May 24, 2018 2:44 PM -0400
To: Nick Rahaniotis , "Dupuy, Karl"
CC: "Fatigate, Michael" , 'Michael Sweeney', "Roseman, Kevin" , 'Khaled Hajjeh', 'JohnPaul Cunningham'
Subject: RE: Verde 5935 - Fulton Ave Bridge - 5/23/18 Successful Main Bridge Operation
Nick
On behalf of EEC great news and we all look forward to a successful operation tonight.
Tonight please update us on the following:

1. Marine Radio
2. Horn, We do know it works
3. Fire Alarm--.......................................
4. CCTV
5. Police Phone \#

Thanks Jeff

From: Nick Rahaniotis [mailto:nrahaniotis@verdeelectric.com]
Sent: Thursday, May 24, 2018 2:40 PM
To: Dupuy, Karl
Cc: Maffei, Raymond Jeff ; Fatigate, Michael ; 'Michael Sweeney' ; kmr5@westchestergov.com; 'Khaled Hajjeh' ; 'JohnPaul Cunningham'
Subject: Verde 5935 - Fulton Ave Bridge - 5/23/18 Successful Main Bridge Operation
All,
As you all may have heard already, after last night's testing procedures the bridge is in full main operation with all interlocks working. All limit switches are set/adjusted to proper settings (cams will be adjusted to final 70 degree settings when steel interference is resolved). To address the issue of brakes, there are/were NO issues with brakes locking/binding. All the brakes were inspected and cleaned of any debris. The covers remain off for anyone to inspect during tonight's demonstrations and will be put on after. The issue was with VFD parameter settings and relay timing. The brakes now smoothly engaged and disengage. We preliminarily ran the full sequence successfully 9 consecutive times with no faults. If anyone has any questions before tonight's shift please let me know. Thank you.
Nicholas Rahaniotis

* F VERDE

89 Edison Ave
Mt. Vernon, N.Y 10550
Phone: (914) 664-7000
Cell: (914) 512-4097
www.verdeelectric.com
~ FLATIRON CONFIDENTIALITY STATEMENT ~T The information in this email is confidential and may be legally privileged. It is intended solely for the addressee. Access to this email by anyone else is unauthorized. If you receive this email in error, please reply to notify me immediately. Thank you.

BOARD OF LEGISLATORS

COUNTY OF WESTCHESTER

Your Committee is in receipt of a transmittal from the County Attorney, pursuant to Section 158.11(5) of the Westchester County Charter for the adoption of an Act which, if adopted by this Board, would authorize the Westchester County Attorney to settle the claims of E.E. Cruz \& Company, Inc. ("Cruz") against the County of Westchester (the "County") for additional compensation under Contract No. 11-503-REV (the "Contract") for Rehabilitation of the Fulton Avenue Bridge over Hutchinson River (BIN 3348220), City of Mount Vernon and Village of Pelham Manor (the "Project").

By a resolution approved on May 12, 2016, the Board of Acquisition and Contract awarded the Contract for the Project to Cruz for the sum of $\$ 14,816,000.00$. The scope of work for the Project included the removal and replacement of the steel bridge deck, stringers and bracing, sidewalk panels and various secondary members of the Fulton Avenue Bridge (the "Bridge"), a bascule movable bridge over the Hutchinson River.

On or about February 2, 2020, Cruz submitted to the Commissioner of the Department of Public Works and Transportation (the "Commissioner") a verified statement in the form of a "Final Application for Payment," along with accompanying materials for this consideration, listing the following two (2) separate claims for additional compensation with respect to work performed by Cruz on the Project seeking additional payment under Contract Item Nos. 589.01, 800.23 and 800.34 for the total sum of $\$ 1,744,719.00$ (the "Claims"):

1. Removal of Existing Steel - Contract Item 589.01.

This claim concerns the removal of existing steel from the Bridge. For Contract Item 589.01, the County's engineering consultant, Henningson, Durham \& Richardson Architecture and Engineering, in association with HDR Engineering Inc. ("HDR"), provided the approximate
quantity of 178,684 pounds of existing steel to be removed from the Bridge with the "Pay Unit" being measured in pounds. In its bid for the Project, Cruz provided a "Unit Bid Price" of $\$ 8.00$ per pound resulting in an "Amount Bid" of $\$ 1,429,472.00$ for the removal of existing steel from the Bridge. To date, Cruz has been paid $\$ 1,429,472.00$ for the removal of 178,684 pounds of steel; however, Cruz seeks an additional payment of $\$ 1,292,000.00$ from the County, claiming that it removed a total of 340,184 pounds of existing steel from the Bridge, or 161,500 pounds over and above the amount approximated by HDR.
2. Floorbeam 5 Interferences - Item Nos. 800.23 and 800.34 .

This claim concerns in-field modifications along the upper and lower flanges of the Bridge's Floorbeam 5. The in-field modifications were required when the upper and lower flanges made contact with separate joints during test operations on November 13, 2017 and February 15, 2018, respectively. Cruz claims that the interferences were the result of errors in the design documents prepared by HDR, and claims that it is entitled to additional compensation in the total sum of $\$ 452,718.00$ for the resulting in-field modifications.

Your committee has been informed that the Commissioner issued a determination (the "Determination") with respect to the Claims for additional compensation under Contract Item No. 589.01, 800.23 and 800.34 on August 27, 2020, finding as follows:

1. Removal of Existing Steel - Item 589.01 .

The total amount of existing steel Cruz removed from the Bridge was $311,402.2$ total pounds-an overrun of 132,718.2 pounds from the original estimate provided by HDR. Applying the $\$ 8.00$ per pound figure bid by Cruz, Cruz is entitled to additional payment of $\$ 1,061,745.60$ for the removal of existing steel from the Bridge pursuant to the terms of the Contract.
2. Floorbeam 5 Interferences - Item Nos. 800.23 and 800.34 .

Cruz is not entitled to additional compensation for the in-field modifications performed by Cruz with respect to Contract Item Nos. 800.23 and 800.34 .
3. Disincentive Assessment - Item No. 698.93940015.

Under Contract Item No. 698.93940015 , substantial completion of the project was required on or before November 22, 2017. The work was not substantially complete until May 24, 2018183 days beyond the substantial completion date. Accordingly, pursuant to a Special Notice annexed to the Project's bid specification, a disincentive assessment of $\$ 2,000.00$ per day must be applied, reducing the sum due Cruz under Contract Item No. 589.01 to $\$ 695,745.60$ (183 days x \$2,000/day).

Cruz, thereafter, advised that it disagrees with the Commissioner's determination and intends to challenge the determination via an Article 78 proceeding.

The Department of Law, the Department of Public Works, and the principals of Cruz have engaged in negotiations in order to avoid the potential additional expense of litigation. These negotiations have resulted in a proposed agreement (the "Settlement Agreement") to settle Cruz's Claims, conditioned on this Honorable Board's approval. Pursuant to the proposed Settlement Agreement, the County is to pay Cruz the sum of $\$ 850,000.00$ in full and final satisfaction of its Claims. The County's engineer for the Project, HDR, is to contribute $\$ 154,254.40$ to the $\$ 850,000.00$ settlement amount with Cruz via direct payment to the County pursuant to a separate agreement with the County, which is the subject of separate legislation being submitted to your Honorable Board for approval simultaneously with this legislative package. In consideration of the $\$ 850,000.00$ payment to Cruz, Cruz and the County will release each other from all claims
related to Cruz's Claims, and the County will rescind and retract the disincentive assessment made within the Commissioner's Determination, identified as Item No. 698.93940015.

Your Committee has come to the determination that entering into the Settlement Agreement, without incurring the potential additional expense of further litigation, hearing, or adjudication of any issues of fact or law, is in the best interest of the County.

Your Committee recommends that this Board approve the accompanying Act authorizing the County to settle the Claims of Cruz.

An affirmative vote of a majority of the Board is required to pass this legislation.

Dated: White Plains, New York
\qquad , 2021

> AN ACT authorizing the County Attorney to settle on behalf of the County of Westchester the claims of E.E. Cruz \& Company, Inc. against the County for additional compensation under Contract No. 11-503-REV for Rehabilitation of the Fulton Avenue Bridge over Hutchinson River (BIN $3348220)$, City of Mount Vernon and Village of Pelham Manor, New York.

BE IT ENACTED by the Board of Legislators of the County of Westchester as follows:
Section 1. The County Attorney is hereby authorized to settle the claims of E.E. Cruz \& Company, Inc. for additional compensation under Contract No. 11-503-REV for Rehabilitation of the Fulton Avenue Bridge over Hutchinson River (BIN 3348220), City of Mount Vernon and Village of Pelham Manor, New York, (the "Contract") alleged by Cruz in its verified statement in the form of a "Final Application for Payment," dated February 2, 2020, revised July 2, 2020, with respect to Contract Item Nos. $589.01,800.23$ and 800.34 (the "Claims"), by the payment of $\$ 850,000.00$ in full and final satisfaction of the Claims, with the County's engineer for the Project, Henningson, Durham \& Richardson Architecture and Engineering, in association with HDR Engineering, Inc., contributing $\$ 154,254.40$ of the $\$ 850,000.000$ payment, and Cruz and the County releasing each other from all claims related to Cruz's Claims, and the County rescinding and retracting the disincentive assessment made in the Commissioner of Public Works and Transportation's Determination, dated August 27, 2020, identified as Item No. 698.93940015.
§2. The County Attorney, or his designee, is hereby authorized to execute and deliver all documents and take such actions as the he deems necessary and desirable to accomplish the purposes hereof.
§3. This Act shall take effect immediately.

FISCAL IMPACT STATEMENT

[^0]: ${ }^{1}$ Cruz subsequently submitted to the Commissioner a revised Contractor's Certificate for Final Application for payment on or about July 2, 2020, affirming that Cruz paid all subcontractors used by it on the Projo Full.

[^1]: cc: Kenneth Jenkins, Deputy County Executive Joan McDonald, Director of Operations
 Hugh J. Greechan, P.E.
 Commissioner of Department of Public Works

